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1 Numerical methods

We implement the model using object-oriented ANSI C++, where each agent
is an instance of a Cell class. Each cell object is endowed with an instance of
a Cell State class, which contains the cell phenotypic parameters (αP , αA,
τP , etc.), volumes (VS, VN , V ), radii (RN , R), maximum interaction distances
(Rcca, Rcba, recorded as multiples of R), position x, and velocity v. We order
the cells with a doubly-linked list structure: each agent is given the mem-
ory addresses of the previous and next cells. This allows us to easily delete
apoptosed cells and insert new daughter cells following proliferation events.
Wrapping the phenotypic properties in a Cell State class makes it easy to
pass heritable properties from parent to daughter cells in a generalised manner.

We discretise microenvironmental field variables (e.g, oxygen σ) on an inde-
pendent Cartesian mesh with uniform spacing ∆x = ∆y = 0.1L, where L
is the oxygen diffusion length scale. We represent the BM morphology with
an auxilliary level set function (see Part I), and we use an auxilliary data
structure to reduce the computational cost of cell-cell interaction testing and
evaluation. (See Section 1.1.)

We now describe the program flow of this numerical implementation. In the
discussion below, N(t) denotes the total number of cells at time t.

(1) Initialisation Routines:
(a) Parse simulation settings file: Parse an XML file containing all

information on the simulation domain, cell types and initial arrange-
ment, phenotypic parameters, data output times, etc. Set global vari-
ables such as the current simulation time t, the current (dynamic)
time step size (∆t, initially zero), etc.

(b) Initialise cells: Create new cell objects and place them within the
computational domain as indicated in the prior step. For each cell,
set its phenotypic parameters, and randomly select its state S with
probabilities specified in the settings (e.g., to match immunohisto-
chemistry). Lastly, set its progression within its state randomly (with
uniform distribution), and update its volume, etc. accordingly.

(c) Initialise BM morphology: Create a level set function d on a mesh
(with ∆x = ∆y = 1 µm) to represent the basement membrane mor-
phology as specified in the settings. Discretise the normal vector n on
the same mesh, computing the gradient n = ∇d either analytically
or by the gradient discretisations in Macklin and Lowengrub (2006).

(d) Initialise microenvironmental variables: Introduce a regular Car-
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tesian mesh and discretise the microenvironmental field variables on
that mesh. For oxygen, initialise σ ≡ σB and solve to steady state.

(2) Main program loop: While t < tmax:
(a) Update microenvironmental variables: Each microenvironmen-

tal variable u must be updated from u(x, t − ∆t) to u(x, t). Solve
the various microenvironmental PDEs using standard finite differ-
ence schemes (Macklin and Lowengrub, 2005, 2008; Macklin et al.,
2009). Compute volume-weighted, upscaled uptake and other reac-
tion rates as necessary. Use independent time step sizes for each vari-
able according to standard CFL stability criteria, until each variable
has been updated to time t.

(b) Update cell-cell interactions: Update the data structure for cell-
cell interaction testing and evaluation. See Section 1.1.

(c) Update the cells: For each cell:
(i) Progress the current cell state: Update the cell with the appro-

priate submodel for its previous state S(t − ∆t) until reaching
the current simulation time t. Any field variable values that are
necessary for computing the cell phenotypic transition probabil-
ities (e.g., oxygen) are interpolated at the cell’s position x.

(ii) Choose the next cell state: If the cell was not quiescent at the
previous time step, then set S(t) = S(t−∆t) unless it has been
altered in (2c.i). If S(t − ∆t) = Q, then choose S(t) by eval-
uating the (exponentially-distributed) random probabilities as
described in Section 1.2.

(iii) Set the cell velocity: Set v according to Eq. 1 in Part II. Use
the optimisation in Section 1.1 to truncate the summation to a
smaller set of interacting cells.

(d) Set ∆t: Dynamically choose the simulation time step size via:

∆t =
ε

max {|vi|}
N(t)
i=1

. (1)

Here, ε is the desired accuracy in the cell position; we use ε = 1 µm.
Note that ∆t is independent of the interaction and microenvironmen-
tal mesh sizes, as the agents themselves are lattice-free.

(e) Update cell positions: For each cell, update the position using:

x(t) =x(t−∆t) + v∆t (2)
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While we use the forward Euler difference for simplicity, improved
methods (e.g., Runge-Kutta (Gottlieb and Shu, 1997; Gottlieb et al.,
2001)) are straightforward to implement.

(f) Update the simulation time: Increment t by ∆t.

Each step in the main program loop requires at most iterating through the list
of the cell agents. If interaction testing can be made similarly efficient, then
the overall computational effort is linear in the number of cells. To attain
this, we use an auxiliary cell-cell interaction testing data structure that can
be constructed linearly in the number of cells, and allows a truncation of the
summation in each cell’s velocity in Eq. 1 in Part II, thus rendering the overall
algorithm linear in the number of cells. See Section 1.1.

1.1 Accelerated cell-cell interaction testing

Let {k}N(t)
k=1 = {1, 2, 3, · · · , N(t)} be a list of all simulated cells in the com-

putational domain D at time t. We construct a data structure that lists all
possible cell-cell interactions at any point in the computational domain D. We
first introduce a uniform Cartesian mesh M = {xi,j} = {(xi, yj)} (the inter-

action mesh) with spacing ∆x = ∆y = 1µm. At each xi,j ∈ M, let {ki,j
m }

Ni,j(t)
m=1

be the list of (potentially) interacting cells at xi,j at time t.

Step 1: Compute the maximum cell-cell interaction distance by

Rcca,max =max
{

Rk
cca

}N(t)

k=1
. (3)

Step 2: For each xi,j ∈ M, set ki,j
0 = 0 and Ni,j(t) = 0. Because no cell

has index 0, this denotes the case of 0 possible interactions at xi,j.

Step 3: For each cell k and for each xi,j satisfying:

|xk − xi,j | ≤Rcca,max +Rk
cca, (4)

set:

ki,j
Ni,j(t)+1 = k (append the cell to the list at xi,j) (5)

Ni,j(t) =Ni,j(t) + 1. (increment the total at xi,j) (6)

At each xi,j , the result is a list of all cells that can interact with a cell centred at
xi,j. In C++, we implement this scheme as a singly-linked list of cell memory
addresses at each xi,j ∈ M; a NULL pointer indicates either an empty list
(Ni,j(t) = 0) or the end of the list (list member Ni,j(t) points to NULL).
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For fixed ` and x ∈ D, we use this list to evaluate expressions of the form

for all cells k ∈ {k}N(t)
k=1 \ {`} compute f (cellk, cell`) (x), (7)

such as
N(t)
∑

k=1
k 6=`

f (xk,x`) . (8)

Let xi,j denote the closest interaction mesh point to x` (the position of cell
`). Then we evaluate Eq. 7 by truncating it to the members of the list at xi,j :

for all cells k ∈
{

ki,j
m

}Ni,j(t)

m=1
\ {`} compute f (cellk, cell`) (x). (9)

In the example above, we truncate the summation to

Ni,j(t)
∑

m=1
k
i,j
m 6=`

f
(

x
k
i,j
m
,x`

)

. (10)

Setting the interaction mesh spacing to 1 µm sufficiently resolves cells (gen-
erally 10 to 20 µm in diameter), which reduces the impact of the nearest-
neighbour approximation above; in practice, a larger spacing may suffice.

Because our interaction potentials have compact support, there is a fixed upper
bound M1 for the number of operations required to update the interaction
lists for each cell; the operation is linear in the number of cells. Similarly, each
interaction mesh point xi,j has a fixed maximum number of list elements M2,
and so evaluating Eq. 9 for all cells 1 ≤ ` ≤ N(t) is linear in the number of
cells. Contrast this with Eq. 7, which for each cell ` scales with N(t); iterating
this non-truncated form over all cells thus requires N(t)2 computational effort.

1.2 Evaluating probabilities

Suppose we have (assumed independent) random variables X1, . . . , Xn with
cumulative probability distributions Fi(t), 1 ≤ i ≤ n. We test for the occurence
of one of the events Xi in the interval [t, t+∆t] by:

(1) Choose r ∈ [0, 1] with uniform random distribution. Numerically, we use
the ran2 pseudorandom generator procedure from Press et al. (1992); the
Mersenne twister pseudorandom generator is also commonly used.

(2) Set pi = Fi(t+∆t)− Fi(t) for 1 ≤ i ≤ n. Define p0 = 0. Set a = b = 0.
(3) For 1 ≤ i ≤ n:
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(a) Set a = b and b = a+ pi. (i.e., a =
∑i−1

j=0 pj and b =
∑i

j=0 pj.)
(b) If a ≤ r ≤ b, then say that event Xi has occurred in [t, t +∆t], and

end the procedure. Otherwise proceed.
(4) If we exit the loop, none of the Xi events has ocurred in [t, t+∆t].

We note that in principle, this procedure can break down for large ∆t, as
∑n

j=1 pj can exceed 1. In practice, we only evaluate probabilities on short time
intervals, thus the pi are small, and this is not an issue in simulations.

2 MultiCellXML: An open multicell simulation data format

We have developed a human-readable, XML-based data format for agent-
based, multicell simulations (MultiCellXML), which includes the random seed
state, global variables, information on (and filenames of) microenvironmental
field variables, and a list of each cell object and its current state. This structure
allows us to easily parse the data (using standardised XML parsers, such as
Expat (Clark, 2007), xmlParser (Berghen, 2009), and TinyXML (Thomason
et al., 2010)) for use in data visualisation and post-processing. The list of cells
in the XML file is very similar to the object-oriented Cell data structure in
the simulator, making the format well-suited to resuming simulations from
saved states. Modifying simulation parameters during a simulation can be
readily achieved with simple plaintext search/replace operations in the XML
files. We note that the MultiCellXML format is under active development;
readers should reference the project website 7 for the very latest standards,
documentation, and software utilities.

We begin with XML header information (<?xml>) for XML 1.0 standards com-
pliance, followed by a “root” <data set> tag. In the <data source> section,
we include information on the originating simulation software (<simulator>),
the user (<user>), and any publication information that may assist the recipi-
ent of a data file in (1) locating the original source of the data, and (2) proper
academic citation (<reference>). See Fig. 1. Future MultiCellXML versions
may include reference and citation information for the simulation software.

Following the <data source> section, the <globals> section includes infor-
mation such as the current simulation time and the random seed state–this is
important for resuming saved simulation states without affecting the pseudo-
random number generator. Where possible, we include information on physical
units as XML tag attributes. We note that because this was initially a for-
mat developed for internal use, we have not been entirely consistent in our
conventions–improvements are planned in future drafts of the file specifica-

7 http://multicellxml.sourceforge.net
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<?xml version="1.0" encoding="UTF-8" ?>

<data_set MultiCellXML_version="1.0">

<data_source>

<filename>data/output00000117.xml</filename>

<created>29 July 2010</created>

<simulator>

<program_name>DCIS_2D</program_name>

<program_version>1.38</program_version>

<compiled>1 July 2010</compiled>

<author>Paul Macklin</author>

<contact>macklin@maths.dundee.ac.uk</contact>

<URL>http://www.maths.dundee.ac.uk/macklin/</URL>

</simulator>

<user>

<name>Paul Macklin</name>

<contact>macklin@maths.dundee.ac.uk</contact>

</user>

<reference>

<citation>Macklin et al. J. Theor. Biol. (2011) (in review)</citation>

<URL>http://multicellxml.sourceforge.net</URL>

<note>User notes may go here.</note>

</reference>

</data_source>

<globals>

<time units="minutes">7020</time>

<next_output_time units="minutes">7020</next_output_time>

<frame_number>117</frame_number>

<random_seed_state>769969952</random_seed_state>

<Domain_width_in_microns>1000</Domain_width_in_microns>

<Domain_height_in_microns>340</Domain_height_in_microns>

</globals>

...

Fig. 1. Start of a MultiCellXML file: The first tag is for XML 1.0 standards com-
pliance. The <data source> section indicates the source of the data, including the
originating program, information on the user, and requested reference for citation
(if any). The <globals> section gives information on program globals, including (in
particular) the current simulation time and the random seed state.

tion. For dimensionless quantities, the scale should ideally be stated (e.g., as
an additional XML attribute):

<local oxygen units="dimensionless" scale="far-field">0.84</local oxygen>

In future drafts, we may include a new <scales> section to facilitate this.

The file format continues with a list structure of all the cells (<cell list>),
with essentially all internal cell variables (i.e., member data of the Cell class)
listed clearly. We give each <cell> both a numeric type (<cell type code>)
to assist comparing and classifying cells in software, and a human-readable
type (<cell type text>) to assist data recipients with interpretting the data.
See Fig. 2. Note that we have included “type” attributes to indicate boolean
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variables, rather than units. In future file version drafts, we may include both
“type” and “units” attributes to all <cell> data fields. However, we can gen-
erally assume that the presence of units indicates a non-boolean variable, and
the precence of a boolean type obviates “units.”

Due to historical reasons stemming from code development, each <cell> is
split into <cell properties> and <cell state> sections; future versions of
the data standard will likely merge these into a single <cell state> section,
because many cell properties tend to change over time due to the cells’ expo-
sure to differing microenvironments.

After all data files have been listed, we include a <global variables> section
with a list of all saved field variables and file formation information. See Fig.
3. Note that we have included the full path of each data file; often all the files
(including the XML file) are saved in the same directory, so postprocessing may
need to strip part of the path by comparison to the <filename> filed in the
<data source> section. Due to the large size of 2-D and 3-D double-precision
data arrays, we opted for a binary data format. For increased compatibility, we
choose the MATLAB .MAT (Level 4) file format, which is relatively simple
to implement directly from the published file format standard (Mathworks,
2010), and is simple to read and write with common open source software
(e.g., Octave) as well as MATLAB. In the source code to follow, we include
C++ code to read and write these MATLAB data.

Lastly, note that a primary goal of our specification is to make the for-
mat as human-readable as possible, rendering the format (partially) “self-
documenting”. This will make it simpler to interpret archived data long after
the originating software is out of use, thus eliminating the need for reverse
engineering–hence our choice of human-readable, non-binary data. While this
results in much larger files, we regard data compression as a separate software
problem from the specification of content. Compression can readily be applied
to the data files after creation with widespread software, such as gzip.

2.1 Benchmark datasets

To demonstrate our open data format and serve as benchmark datasets, we
are releasing 8 the full datasets for simulation times 0, 15, 30, and 45 days
from the “baseline” simulation; see Section 7 in Part II. Included files:

(1) output00.zip: contains all data from 0 days:
(a) output000000000.xml: MultiCellXML data

8 No license applies here, aside from standard scientific citation ethics. Please ref-
erence Part II (Macklin et al., 2011).
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...

<cell_list>

<cell>

<cell_properties>

<cell_type_code>0</cell_type_code>

<cell_type_text>DCIS cell</cell_type_text>

<radius units="microns">9.95299956207</radius>

<nuclear_radius units="microns">5.295</nuclear_radius>

<volume units="cubic microns">4130.00487398</volume>

<mature_volume units="cubic microns">4130.00487398</mature_volume>

<solid_volume units="cubic microns">413.000487398</solid_volume>

<cell_adhesion_1_level units="dimensionless">1</cell_adhesion_1_level>

<cell_adhesion_2_level units="dimensionless">0</cell_adhesion_2_level>

<matrix_adhesion_level units="dimensionless">1</matrix_adhesion_level>

<calcite_level units="dimensionless">0</calcite_level>

<mean_cell_cycle_time units="minutes">1080</mean_cell_cycle_time>

<mean_G1_time units="minutes">540</mean_G1_time>

<mean_time_to_apoptosis units="minutes">47196.6</mean_time_to_apoptosis>

<mean_time_to_mitosis units="minutes">115.27</mean_time_to_mitosis>

<cell_adhesion_exponent units="dimensionless">1</cell_adhesion_exponent>

<BM_adhesion_exponent units="dimensionless">1</BM_adhesion_exponent>

<calcite_adhesion_exponent units="dimensionless">1</calcite_adhesion_exponent>

<cell_repulsion_exponent units="dimensionless">1</cell_repulsion_exponent>

<BM_repulsion_exponent units="dimensionless">1</BM_repulsion_exponent>

<cell_adhesion_max_distance units="x radius">1.214</cell_adhesion_max_distance>

<BM_adhesion_max_distance units="x radius">1.214</BM_adhesion_max_distance>

<calcite_adhesion_max_distance units="x radius">1.214</calcite_adhesion_max_distance>

</cell_properties>

<cell_state>

<is_cycling type="boolean">true</is_cycling>

<is_quiescent type="boolean">false</is_quiescent>

<is_apoptosing type="boolean">false</is_apoptosing>

<is_anoxic type="boolean">false</is_anoxic>

<is_necrosing type="boolean">false</is_necrosing>

<is_debris type="boolean">false</is_debris>

<apoptosis_time units="minutes">360.85</apoptosis_time>

<necrosis_time units="minutes">0</necrosis_time>

<cell_cycle_time units="minutes">0</cell_cycle_time>

<Position units="microns">(86.5665990925,53.5000597051,0)</Position>

<Velocity units="microns/minute">(-0.108426856979,0.213070920989,0)</Velocity>

</cell_state>

</cell>

<cell>

...

</cell>

...

</cell_list>

...

Fig. 2. Main content of a MultiCellXML file: Within the <cell list> section, we
save each individual cell agent’s data within a set of <cell></cell> tags, including
<cell properties> and the <cell state>. In future revisions, these fields may be
merged due to the fact that cell properties change in time. Note: These fields have
been minimised from the actual published datasets to simplify the presentation.
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...

<global_variables>

<variable>

<name>oxygen</name>

<format version="Level 4">MATLAB</format>

<filename>data/oxygen_00000117.mat</filename>

</variable>

<variable>

<name>Duct_Wall_Level_Set</name>

<format version="Level 4">MATLAB</format>

<filename>data/level_set.mat</filename>

</variable>

</global_variables>

</data_set>

Fig. 3. End of a MultiCellXML file: After the cell list section, the
global variables section gives a list of all associated external field data (here
saved in MATLAB format).

(b) oxygen 000000000.mat: (dimensionless) oxygen data
(c) levelset.mat: basement membrane morophology

(2) output15.zip: contains all data from 15 days:
(a) output000000360.xml: MultiCellXML data
(b) oxygen 000000360.mat: (dimensionless) oxygen data
(c) levelset.mat: basement membrane morophology

(3) output30.zip: contains all data from 30 days:
(a) output000000720.xml: MultiCellXML data
(b) oxygen 000000720.mat: (dimensionless) oxygen data
(c) levelset.mat: basement membrane morophology

(4) output45.zip: contains all data from 0 days:
(a) output0000001080.xml: MultiCellXML data
(b) oxygen 000001080.mat: (dimensionless) oxygen data
(c) levelset.mat: basement membrane morophology

The most up-to-date version of these datasets will be maintained at the
MultiCellXML project website.

2.2 Sample post-processing

Because the cell data are saved in a standardised XML configuration, post-
processing is a combination of XML parsing and visualisation (to interpret
the data). In our implementation, we choose the relatively compact TinyXML
library (Thomason et al., 2010) with customised interfaces to simplify the
process; this allows us to distribute code as fully self-contained, without need
for installation of external libraries. We use the open source EasyBMP library
(Macklin, 2005–present) for image operations. Source code is provided at the
MultiCellXML project website; this software has been tested in Windows (with
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the mingw implementation of the g++ compiler), Linux, and OSX 10.6 in 32-
bit and 64-bit environments.

In our post-processing code, we do the following:

(1) Parse the <cell list> XML data:
(a) Create a singly-linked list of a simplified cell objects (read from the

<cell list> section), consisting primarily of cell location, radius,
degree of calcification, and phenotypic state.

(b) Plot the cells in a temporary BMP image (in the program memory
space–this is not actually saved as a file) for use in further geometric
processing.

(c) Plot a virtual “buffer” around all the cells to help fill in holes in the
viable rim–this is essential for later cell density calculations, as well
as for identifying the entire viable rim.

(2) Fill remaining holes in the viable rim to ensure its correct identification.
(3) Crop the virtual images at the leading and trailing edges to eliminate

the “edge effects” and best match the patient data images. Remove the
corresponding cell objects from the linked list.

(4) Count the total, proliferating, and apoptotic cells within the viable rim.
Use these to calculate the proliferative index (PI) and apoptotic index
(AI).

(5) Count the number of coloured pixels of the viable rim in the temporary
image, and use this to calculate the area of the viable rim. (1 pixel is 1
µm2.)

(6) Use the known length of the cropped domain to calculate the mean viable
rim thickness.

(7) Use the viable rim area and total cell count in the cropped areas to
calculate the cell density.

(8) Calculate the position of the farthest tumour cell (uncropped). Do the
same for calcified cells.

(9) Use the known total numbers of (uncropped) viable tumour cells to find
the 95% position (i.e., xV95 such that 95% of the tumour is in the region
{(x, y) : x ≤ xV95}). Do the same for calcified cells.

(10) Append these data to PPdata.txt.
(11) Once done looping over all specified files, write legend.txt to document

the structure of PPdata.txt

To use this code, compile it according to your compiler instructtions. (g++
users may use the supplied makefile. Windows 32-bit binaries are included
in our distributions. Please note that the compiler optimisations are oriented
towards 32-bit Core2 Intel processors and above.) To apply the code to the
supplied data for time 30 days, type:

> ./PostProcessing output00000720.xml
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To apply the code to all the supplied data, type:

> ./PostProcessing output*.xml

This software is licensed under the GPL 3.0. It is packaged with TinyXML
(zlib/libpng license – see Thomason et al. (2010)) and EasyBMP (Modified
BSD license – see Macklin (2005–present)). We request that users cite this
paper and the project website in their “methods” section when publishing
results that make substantial use of the code or derivative works.

2.3 Sample visualisation

Visualisation is performed similarly, but requires much less processing. We
plot each cell as a circle with correct colour, overlay a solid nucleus, and draw
a dark border. We draw the basement membrane based upon the zero contour
of the level set function. Afterwards, we overlay a scale bar, label the time,
and save the image.

We regard image creation and image compression as separate software prob-
lems. We use the BMP format because it is simple, universally understood,
can be implemented without need for complex external libraries, and does
not introduce visual artifacts to the data (in contrast to formats with lossy
compression, such as JPEG). The lack of visual artifacts is also helpful for
pixel-based image processing operations by other software. Users can readily
compress the images using standard tools (e.g., ImageMagick and GIMP), or
combine the BMP frames into an (uncompressed) AVI animation using tools
such as EasyBMPtoAVI (Macklin, 2006–present).

Source code is provided at the MultiCellXML project website; this software
has been tested in Windows (with the mingw implementation of the g++
compiler), Linux, and OSX 10.6 in 32-bit and 64-bit environments. To use
this code, compile it according to your compiler instructtions. (g++ users may
use the supplied makefile. Windows 32-bit binaries are included in our dis-
tributions. Please note that the compiler optimisations are oriented towards
32-bit Core2 Intel processors and above.) To apply the code to the supplied
data for time 30 days, type:

> ./visualize_DCIS_2D output00000720.xml

This software is licensed under the GPL 3.0. It is packaged with TinyXML
(zlib/libpng license – see Thomason et al. (2010)) and EasyBMP (Modified
BSD license – see Macklin (2005–present)). We request that users cite this
paper and the project website in their “methods” section when publishing
results that make substantial use of the code or derivative works.
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Fig. 4. Robustness of the mechanics parameters: We varied the cell-cell re-
pulsive force αccr/ν while maintaining the relative balance of the forces; this is
equivalent to varying the biomechanics time scale. For αccr/ν within an order of
magnitude of our initial estimate, both the tumour front velocity (left plot) and
viable rim cell thickness (right plot) varied little from our baseline simulation. Bars
represent one standard deviation from the computed mean for each parameter value.

3 Additional numerical parameter studies

We performed additional parameter students to those in Part II, which were
cut from the main manuscript but nonetheless support and/or further inves-
tigate the model, and may be of interest to the reader.

3.1 Robustness of the mechanics parameters

In Section 3.6 in Part II, we estimated the cell-cell repulsion parameter αccr/ν
to be on the order of 10 µm/min. To assess the sensitivity of the model to
error in this estimate, we varied αccr/ν ∈ {1, 2, 5, 10, 20, 100} µm/min and
simulated 30 days of growth with all other parameters as in the baseline case
(Section 7 in Part II). In particular, we kept αcca/αccr constant for all the
simulations to maintain the target cell density as in the calibration protocol,
and we set αcbr = αccr, and αcba = 10αcca. Changing αccr while maintaining
these ratios of forces is equivalent to altering the biomechanics time scale.

For each combination of mechanics parameters, we calculated the smoothed
tumour front velocity x′

V(t) at one-hour intervals from 10 to 25 days. (xV ex-
ceeds 1 mm at 30 days for αccr/ν = 100 µm/min.) For any t, we calculated the
smoothed x′

V(t) based upon the least-squares linear fit to xV on t± 24 hours.
In Fig. 4: left, we plot 〈x′

V〉 versus αccr/ν; the bars denote one standard devia-
tion above or below the mean. For 5 ≤ αccr/ν ≤ 50 µm/min, the tumour front
velocity was comparable, indicating that our simulations are robust so long
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Fig. 5. Impact of the ratio of cell-cell and cell-BM adhesive forces αcca/αcba:
Left: For αcca/αcba = 1 and greater, cells easily pull away from the duct wall except
in regions of densely packed duct. Right: For αcca/αcba = 0.01, cells get trapped
near the BM, leading to a “wetting” effect that accelerates the tumour’s advance
through the duct. High oxygenation near the duct wall acts as nonlinear feedback
to accelerate the process. Cells are coloured as in Fig. 3. Bar: 100 µm. A colour
version of this figure is available in the online edition.

as we can estimate the mechanics parameters within an order of magnitude.
This is advantageous, as the individual cell mechanics parameters are among
the most difficult to measure accurately.

To further evaluate the model’s robustness, we calculated the mean cell density
ρ throughout the viable rim at one-hour increments from 10 to 25 days for
each of these simulations. In Fig. 4: right, we plot 〈ρ〉 versus αccr/ν; the bars
denote one standard deviation above or below the mean. Similarly to 〈x′

V〉,
the mean cell density was comparable for 5 ≤ αccr/ν ≤ 100 µm/min. This
again indicates that our simulations are robust so long as we can estimate the
mechanics parameters within an order of magnitude. Note that if αccr/ν ≤ 1
µm/min, then the cell density increases rapidly. This is consistent with our
earlier results that the cell-cell repulsion parameter must be on the order of
10 to prevent overlapping cells.

3.2 On the balance of cell-cell and cell-BM adhesion

We studied the impact of the balance of cell-cell and cell-BM adhesive forces
by varying αcca

αcba
∈ {0.01, 0.1, 1, 10}, while maintaining αcca

αccr
constant. As this

ratio is increased to 1 and above, the cells begin to pull off the BM except
in regions of dense cell packing. See Fig. 5: left for a typical example (at 15
days) with αcca

αcba
= 1. In 3D, the curvature of the duct may reduce this effect.

On the other hand, for αcca

αcba
= 0.01, it was very difficult for daughter cells to

push away from the BM after proliferation, leading to a “wetting” effect along
the duct wall similar to a fluid capillary force. See Fig. 5: right (plotted at
15 days). This increased the percentage of cells near the high-oxygen regions
of the duct, which acted as a feedback that accelerates the tumour’s advance
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through the duct at unrealistic rates. See Video S2. Because the cell-BM adhe-
sive force is modelled as normal to the BM (thereby neglecting any tangential
component), the BM is effectively frictionless, further exacerbating this effect.

3.3 Amount of necrotic cell swelling primarily influences the gap

We varied the level of necrotic cell swelling fNS ∈ {0%, 30%, 100%} and found
virtually no impact on the least-squares fit of the rate of tumour advance
from 15 to 30 days. (24.78, 24.38, and 24.25 µm/day, respectively.) Instead,
the primary impact was to increase the size of the physical gap, with increases

scaling roughly as (1 + fNS)
1
3 (result not shown).

3.4 Heterogeneous oxygen uptake causes perinecrotic bounary instability

In Section 3.5 in Part II, we estimated that proliferating and non-proliferating
tumour cells uptake oxygen at approximately the same rate, with λp = λnp.

We close with an investigation of λp

λnp
∈ {1, 10, 100}. In each simulation, we

maintained 〈λ〉 = PIλp+(1−PI)λnp constant. The results at time 30 days are

plotted in Fig. 6. As λp

λnp
is increased, the stability of the perinecrotic boundary

is reduced, with greater mixing of necrotic cellular debris and viable tumour
cells. This occurs because high oxygen uptake by isolated proliferating cells
creates small pockets of hypoxia between these cells and the necrotic core. See
Video S3. The result is a ragged perinecrotic boundary not typically observed
in DCIS, further supporting the estimate that λp ≈ λnp.

However, it is interesting to observe that such an instability can result from
microscopic variations in cell metabolism caused by cell-induced, fine-scale
alterations in the tumour microenvironment; such instabilities are often at-
tributed to variations in cellular adhesion. While the result here is likely non-
physical for oxygen transport, similar behaviour could occur in glucose trans-
port, where glucose uptake is much greater for hypoxic cells than non-hypoxic
cells (Smallbone et al., 2007b,a; Gatenby et al., 2007).

4 Simulation Animations

To better illustrate the key results, we include the following animations below.
In each animation, the cells are labelled as follows:

• Dark blue circles: cell nuclei
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Fig. 6. Impact of heterogeneous oxygen uptake rates: As the ratio λp/λnp of
the oxygen uptake rates by the proliferating (λp) and nonproliferating cells (λnp)
is increased from 1 (top) to 10 (middle) and 100 (bottom), the stability of the
perinecrotic boundary is reduced, with greater mixing of necrotic cellular debris and
viable cells. These morphologies are not typical in DCIS, supporting the estimate
that λp ≈ λnp. Cells are coloured as in Fig. 3. Bar: 100 µm. A colour version of this
figure is available in the online edition.

• Green cells: proliferating cells (S = P; cells in non-G0 phase)
• Pale blue cells: quiescent cells (S = Q; cells in G0 phase)
• Red cells: apoptotic cells (S = A)
• Gray cells: necrotic cells prior to lysis (S = N )
• Red circles: necrotic cellular debris after lysis (S = N ); shade of red indi-
cates the degree of calcification

• Bright red circles: clinically-detectable calcified cellular debris (S = C)

The movies are in AVI format and compressed with the Xvid codec. The
open source VLC media player can play these movies on multiple platforms,
including Windows, OSX, and Linux. Alternate formats are indicated below.

(1) Video S1: the “baseline” simulation from Section 7 in Part II, plotted
in 1.5 mm of duct from 0 to 45 days.
Alternate format: http://www.youtube.com/watch?v=b GVnZWVhgk.
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(2) Video S2: “wetting” behaviour when cell-BM adhesion is strong relative
to cell-cell adhesion (αcba = 100αcca; see Section 3.2 in Part II), plotted
from 0 to 30 days in 1 mm of duct.
Alternate format: http://www.youtube.com/watch?v=9q9LGzX9fok.

(3) Video S3: unstable perinecrotic boundary (between the viable rim and
the necrotic core) resulting from heterogeneous cellular oxygen uptake
rates (λp = 100λnp; see Section 3.4 in Part II), plotted from 0 to 30 days
in 1 mm of duct.
Alternate format: http://www.youtube.com/watch?v=Brgw8qI8k-k.
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