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1 Ductal carcinoma in situ (DCIS) of the breast

Patient-specific DCIS simulation both motivates our model development and
serves as a test bed for the resulting framework. We now discuss the specific
biology of normal breast tissue and how that biology is subverted in DCIS.
For further pertinent biological background (including support for some mod-
elling assumptions), see Macklin (2010) and the references therein. The biology
discussed below is generally applicable to most epithelial malignancies.

1.1 Biology of breast duct epithelium

The breast is organised as a system of 12-15 independent, largely parallel
duct systems: clusters of milk-producing lobules that feed into a branched
duct system that terminates at the nipple (Wellings et al., 1975; Moffat and
Going, 1996; Ohtake et al., 2001; Going and Mohun, 2006). The duct systems
are separated by supporting ligaments and fatty tissue and drained by the
lymphatic system (Tannis et al., 2001). Each duct is a tubular arrangement
of epithelial cells that enclose a fluid-filled lumen. The epithelium, in turn, is
surrounded by myoepithelial cells (epithelial cells with contractile properties
to transport milk) and a basement membrane. Surrounding the duct is the
stroma, which is comprised primarily of a supporting scaffolding of fibres (the
extracellular matrix, or ECM) and mesenchymal cells that maintain the ECM.
The stroma is interlaced by blood vessels that supply oxygen and other vital
substrates to the tissue. See Fig. 1 (top left). Note that the breast epithelium
has no direct access to oxygen and nutrients; these must diffuse into the duct
through the BM.

The epithelial cells are polarised : integrins on a well-defined basal side adhere
to the basement membrane, E-cadherin molecules on the lateral sides adhere to
neighbouring cells, and the apical side has relatively few adhesion molecules.
See Fig. 1 (top right). The epithelial cell arrangement in the duct depends
critically upon this polarisation and the resulting nonuniform distribution of
adhesive forces (Jiang and Chuong, 1992; Hansen and Bissell, 2000; Wei et al.,
2007; Butler et al., 2008).

While the epithelial cell population oscillates with the menstrual cycle (Khan
et al., 1998, 1999), on average proliferation and apoptosis balance to maintain
homeostasis. Microenvironmental changes can trigger signalling responses that
lead to proliferation or apoptosis, which ordinarily helps to safeguard the
normal tissue architecture. For example, a decrease of E-cadherin signalling
(following apoptosis in a neighbouring cell) can increase β-catenin signalling,
which eventually increases proliferation to replace the missing cell (Conacci-
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Fig. 1. Top Left: Typical breast duct microanatomy. Top Right: Breast duct epithe-
lial cell polarisation. Bottom: Major DCIS types and invasive ductal carcinoma. An
advance copy of this figure appeared in Macklin et al. (2009a, 2010a).

Sorrell et al., 2002; Hansen and Bissell, 2000; Wei et al., 2007). Adhesion
to the BM triggers integrin signalling and downstream production of survival
proteins that inhibit apoptosis (Ilić et al., 1998; Giancotti and Ruoslahti, 1999;
Stupack and Cheresh, 2002). Loss of attachment to the BM therefore allows
one type of apoptosis (anoikis) to occur, thus preventing overgrowth of cells
into the lumen (Danes et al., 2008). Hormones such as estrogen, progesterone,
prolactin, and epidermal growth factor can affect epithelial cell proliferation
and apoptosis prior to lactation (Anderson, 2004), during breast involution
(Baxter et al., 2007), and in cancer (Simpson et al., 2005).

1.2 Biology of DCIS

Overexpressed oncogenes and underexpressed tumour suppressor genes can
disrupt the balance of epithelial cell proliferation and apoptosis, leading to
overproliferation. This can occur typically either by the accumulation of DNA
mutations (genetic damage) or DNA amplification (Simpson et al., 2005), or
epigenetic anomalies (Ai et al., 2006). The transformation from regular breast
epithelium to carcinoma is thought to occur in stages. For simplicity, we set
aside the relatively benign precursor transformations (e.g., atypical ductal
hyperplasia) which have a low risk for subsequent invasive breast cancer (Page,
1992) and focus on DCIS.

In the most well-differentiated classes of DCIS, the epithelial cells maintain
their polarity and anisotropic adhesion receptor distributions, resulting in par-
tial recapitulation of the non-pathological duct structure within the lumen.
These demonstrate either finger-like growths into the lumen (micropapillary:
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see Fig. 1 (bottom:a)), or arrangements of duct-like structures (cribriform:
see Fig. 1 (bottom:b)) (Silverstein, 2000). The cells in solid type DCIS lack
polarity and do not develop these microstructures. Instead, the cells prolifer-
ate until filling the entire lumen (Fig. 1 (bottom:c)) (Danes et al., 2008). The
proliferating cells uptake oxygen and nutrients as they diffuse into the duct,
causing substrate gradients to form. If the central oxygen level is sufficiently
depleted, a necrotic core of debris forms (comedo-type solid DCIS: see Fig. 1
(bottom:c)) (Silverstein, 2000). These necrotic cells are typically not phagocy-
tosed; instead, they swell and burst (Barros et al., 2001), and their solid (i.e.,
non-water) components are slowly calcified (Stomper and Margolin, 1994). It
is these calcifications that are generally detected by mammograms when di-
agnosing DCIS (Ciatto et al., 1994). The BM blocks DCIS from invading the
stroma, thereby impeding spread through the stroma, invasion into lymphovas-
cular channels and hence metastasis. Further mutations can transform DCIS
into invasive ductal carcinoma, whose cells move along the duct, secrete matrix
metalloproteinases (MMPs) to degrade the BM and subsequently invade the
stroma (Fig. 1 (bottom:d)). See Silver and Tavassoli (1998) and Adamovich
and Simmons (2003).

While it is tempting to regard DCIS as a linear progression from regular ep-
ithelium to cribriform or micropapillary (“partially transformed”) to solid type
(“fully transformed”), the morphological and molecular pathway is currently
an open question (Erbas et al., 2006; Rennstam and Hedenfalk, 2006). The
excellent modelling and analysis by Sontag and Axelrod (2005) strongly re-
futes a linear progression model. The dominant type of DCIS in any particular
case may depend upon the underlying molecular changes. For example, crib-
riform DCIS could arise from hyperproliferative cells where genes regulating
polarisation are functionally intact.

2 A sampling of significant agent-based modelling beyond DCIS

It is beyond the scope of this overview to exhaustively review all discrete
biomathematics modelling; instead, we briefly sample significant relevant prior
agent-based models, beyond the scope of DCIS modelling emphasised in the
main text. For a broader and deeper review of discrete modelling, please see
Lowengrub et al. (2010); Macklin et al. (2010b); Deisboeck et al. (2011) and
the references therein, such as Anderson and Quaranta (2008); Deisboeck et al.
(2009) and Zhang et al. (2009).

Cellular automata methods–which arrange cells on a regular (e.g., Cartesian
or hexagonal) lattice with probabilities governing state changes and jumps
between lattice points–are efficient for linking molecular- and cellular-scale bi-
ology in large numbers of virtual cells. However, they cannot accurately model
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cell and tissue mechanics due to the limitations they place upon cell arrange-
ment (must be grid-aligned), size (all cells have equal size), velocity (cells move
one cell diameter per time step), and interactions (can only interact with up to
8 neighbours in 2D). In particular, proliferation is disallowed in cells that are
surrounded by cells in the adjacent computational mesh points; in actual tis-
sue, interior cells can proliferate by deforming and pushing neighbouring cells
into non-lattice configurations. We use agent-based modelling (ABM), which
eliminates the computational lattice and instead assigns each cell a position
that evolves under the influence of forces acting upon it. Note that ABMs
are sometimes referred to as individual-based models or particle methods. Al-
ternative approaches include the lattice-gas method (Dormann and Deutsch,
2002), off-lattice cellular automata methods such as Voronoi-Delaunay models
(Schaller and Meyer-Hermann, 2005), the immersed boundary cell model (Re-
jniak, 2007; Rejniak and Dillon, 2007; Rejniak and Anderson, 2008a,b), and
the cellular potts technique (a.k.a. Graner-Glazier-Hogeweg model) (Graner
and Glazier, 1992; Glazier and Garner, 1993).

An excellent agent-based model was developed by Drasdo, Höhme and co-
workers (Drasdo et al., 1995; Drasdo and Höhme, 2003, 2005; Drasdo, 2005).
Cells are modelled as roughly spherical, slightly compressible, and capable of
migration, growth and division. Cell adhesion and repulsion (from limitations
on cell deformation and compressibility) are modelled by introducing an inter-
action energy; cells respond to proliferation and apoptosis in their neighbours
by moving to reduce the total interaction energy using a stochastic algorithm.
Ramis-Conde et al. (2008a,b) used a similar agent model, but instead used in-
teraction potential functions to simulate cell-cell mechanics: cells move down
the gradient of the potential, analogous to minimizing the interaction en-
ergy. Their work included a basic accounting for the cell-cell surface contact
area, and related the strength of cell-cell adhesion to the concentration of E-
cadherin/β-catenin complexes in the contact regions. Others have modelled
cells as deformable viscoelastic ellipsoids (e.g., Palsson and Othmer (2000);
Dallon and Othmer (2004)).

Drasdo et al. (1995) initially developed their agent model to study epithelial
cell-fibroblast-fibrocyte aggregations in connective tissue. More recently, they
applied it to avascular tumour growth (Drasdo and Höhme, 2003), with bio-
physical and kinetic parameters drawn from experimental literature (Drasdo
and Höhme, 2005). Byrne and Drasdo (2009) upscaled a discrete model to cali-
brate a continuum tumour growth model, in part by using a cell velocity-based
approximation of the proliferative pressure to calibrate the continuum-scale
mechanics. Drasdo and co-workers were able to mechanistically model biome-
chanical growth limitations and the epithelial-to-mesenchymal transition in
tumour cells, and they made testable hypotheses on the links between tumour
hypoglycaemia and the size of the necrotic core. Galle et al. (2005, 2009) ex-
tended the approach to include cell-BM adhesion, and its impact on cell dif-
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ferentiation and tumour monolayer progression. Ramis-Conde et al. (2008a,b)
used their model to investigate the links between a sophisticated subcellular
model of E-cadherin/β-catenin signalling, intercellular signalling, and tissue
morphology.

The very recent agent model of Norton et al. (2010) represented cell-cell ad-
hesion and repulsion using a linear damped spring model, incorporated both
apoptosis and necrosis, duct wall adhesion (through adhesion to myoepithelial
cells), asymmetric progenitor cell division, and a simplified model of intra-
ductal fluid pressure. The model recapitulated solid-type, comedo-type, mi-
cropapillary, and cribriform DCIS, illustrating the great potential in an agent-
based modelling approach. However, the model lacked substrate transport,
necrosis was modelled by imposing the viable rim thickness a priori rather
than through a combination of cell energetics and transport limitations, and
proliferating cells were randomly distributed across the viable rim with uni-
form distribution; this contradicts immunohistochemical observations of the
distribution of proliferating DCIS cells within the duct (e.g., as in Fig. 2).
The authors did not treat necrotic core mechanics, which has a great impact
on the overall tumour morphology and rate of tumour advance in the duct.
The observed microstructures were only partly mechanistic because the model
enforced polarised cell-cell adhesion and “microlumens” algorithmically; in a
mechanistic model, the tumour microstructure should not be imposed, but
rather emerge naturally from the model’s biophysics and population dynamics.
Nonetheless, their work demonstrates the great potential in using individual-
based models to formulate new hypotheses on the biophysical underpinnings
of cancer; based upon their polarisation model, they hypothesise that DCIS
tumours progress from micropapillary to cribriform to solid-type because over-
proliferation collapses the “microlumens.”

We are drawn to agent-based modelling due to its great potential for calibra-
tion to and comparison with in vitro and clinical data. After a particularly
rigorous calibration of their biomechanical models, Galle et al. (2005, 2009)
produced quantitatively accurate predictions of in vitro monolayer growth
in several cell lines. Additionally, they tested competing hypotheses and com-
pared the simulations to additional experiments to investigate the interrelated
roles of cell-cell and cell-BM contact inhibition. And in a novel inverse map-

ping approach, Engelberg et al. (2008) used an agent-based framework on
a hexagonal mesh to iteratively determine a minimal set of “axiomatic op-
erating principles” that could reproduce in vitro measurements of EMT6 (a
mammary tumour cell line) growth characteristics in high- and low-nutrient
environments. As we see in the main text, by rigorously calibrating our model
to clinical DCIS data, were are able to make quantitative, testable predictions
on emergent macroscopic DCIS behaviour, as well as new hypotheses on how
necrotic core biomechanics affect mammography, diagnostic pathology, and
clinical progression.
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3 Agent model generalisations

Heterophilic cell-cell adhesion (Fcca): In heterophilic cell-cell adhesion
(e.g., Springer (1990); Terol et al. (2003); Lucio et al. (1998)), adhesion recep-
tors IA bond with dissimilar ligands IB, and vice versa. Hence,

fi,j = IA,iIB,j + IB,iIA,j, (1)

where IA,i and IB,i are cell i’s (nondimensionalised) IA and IB expressions.

Cell-ECM adhesion (Fcma): Integrins IE on the cell surface form het-
erophilic bonds with suitable ligands LE in the ECM. We assume that LE is
distributed proportionally to the (nondimensional) ECM density E. If IE is
distributed uniformly across the cell surface and E varies slowly relative to
the spatial size of a single cell, then cells at rest encounter a uniform pull
from Fcma in all directions, resulting in zero net cell-ECM force. For cells in
motion, Fcma resists that motion similarly to drag due to the energy required
to overcome I − L bonds:

Fcma = −ccmaIE,iEvi. (2)

Here, ccma is a constant. If E or LE varies with a higher spatial frequency, or
if IE is not uniformly distributed, then the finite half-life of IE − LE bonds
will lead to net haptotactic-type migration up gradients of E (Macklin et al.,
2010b). We model this effect as part of the net locomotive force Floc.

For cells in a lumen where E is zero, Fcma = 0. However, cells encounter ECM
(E 6= 0) when invading the stroma, when pushed into the stroma through
breaks in the BM (following an inadequate surgical resection or after a phe-
notypic change that causes MMP secretions), or following deposition of ECM
by other cell species. Inclusion of this term facilitates future investigations
of microinvasion and regrowth following inadequate surgical resection. As we
shall see below, Fcma is important for understanding Darcy’s law formulations
of tissue mechanics. We note that Preziosi and Tosin (2009) discussed a gen-
eralisation of Eq. 2 to develop biologically-justified tissue-scale biomechanics
models; their work was supported and driven by an extensive review of the
experimental literature on cell adhesion molecules.

Generalised hypoxia (H): Cells enter the hypoxic state at any time that
σ < σH. Hypoxic cells have an exposure time-dependent probability of becom-
ing necrotic:
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Pr (S(t +∆t) = N|S(t) = H) = 1− exp

(

−
∫ t+∆t

t
βH(σ)(s) ds

)

ds

≈ 1− exp(−βH (σ) (t)∆t) . (3)

We currently model βH(σ)(t) as constant, although it could readily be made
dependent upon σ to more explicitly model energy depletion, such as in Small-
bone et al. (2007a); Silva and Gatenby (2010). If σ > σH (normoxia is restored)
at time t + ∆t and the cell has not become necrotic, it returns to its former
state and resumes its activity. For example, if the cell transitioned from P to
H after spending τ time in the cell cycle, and normoxic conditions are restored,
then it returns to P with τ time having elapsed in its cell cycle progression.
This is a simplified model of the persistence of the cell’s proteomic state during
short periods of hypoxia; indeed, restoration of normoxia can sometimes “res-
cue” hypoxic cells to resume cell cycling (DiGregorio et al., 2001; Green et al.,
2001; Gilliland et al., 2009), and hypoxic cells can re-enter an apoptotic state
upon restoration of normoxia (Tatsumi et al., 2003). Model refinements may
be necessary to fully capture normoxic cell rescue, given the known multiple
arrest points (e.g., G1 and metaphase during M), the important role played
by glucose in these processes, and a “startup” time to resume transcription,
protein synthesis and ATP production prior to cycle resumption.

Notice that by Eq. 3, the probability that a cell succumbs to hypoxia increases
with ∆t whenever S = H, independently of previous states. Hence, this prob-
ability scales (nonlinearly) with its cumulative exposure time to hypoxia. This
construct could model cell response to other stressors (e.g., chemotherapy),
similarly to “area under the curve” models (e.g., El-Kareh and Secomb (2005)).

4 Additional mathematical notes and analyses

4.1 Relationship of the inertialess assumption to Darcy’s law

Recall the inertialess formulation of the agent velocity:

vi =
1

ν + ccmaIE,iE









N(t)
∑

j=1
j 6=i

(

Fij
cca + Fij

ccr

)

+ Fi
cba + Fi

cbr + Fi
loc









. (4)

It is interesting to compare Eq. 4 with Darcy’s law, the basis of many continuum-
scale tumour models such as Cristini et al. (2003); Macklin and Lowengrub
(2005, 2006, 2007, 2008); Macklin et al. (2009b), where tumour growth is
considered as incompressible flow in a porous medium (the ECM). A mechan-
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ical pressure P models tissue mechanics as a balance of proliferation-induced
stresses, adhesion, and tissue relaxation. If u(x, t) is the mean tissue velocity
at x, then the Darcy’s law formulation of the tissue mechanics is

u = −µ∇P. (5)

See the extensive review, discussion, and references in Lowengrub et al. (2010).

The mobility coefficient µ models the ability of cells to mechanically respond
to pressure gradients by overcoming cell-cell and cell-ECM adhesive bonds,
or by deforming the ECM (Macklin and Lowengrub, 2007). In Frieboes et al.
(2007); Macklin et al. (2009b), we introduced a functional relationship between
the mobility µ and the ECM density E of the form

µ =
1

α + βE + 1
ǫ
S
, (6)

where S is a “structure variable” that models the presence (S = 1) or absence
(S = 0) of rigid barriers, ǫ ≈ 0, and α and β are constants. When S = 0, Eq.
6 is identical to the coefficient in Eq. 4. While Eq. 6 was initially chosen as the
simplest possible with biologically-reasonable qualitative behaviour (mobility
decreases as the ECM density increases, rendering the tissue less “permeable”
to cells), it is fully consistent with the cell-scale biophysics presented above.

4.2 Relationship between the exponential random variables and nonhomogen-

eous Poisson processes

To date, stochastic processes have primarily been applied to understanding cell
evolution (e.g., differentiation and mutation networks), but have not been com-
monly used to model and analyse phenotypic state transitions. Instead, phe-
notypic state changes are generally modelled by constant probabilities (e.g.,
see Anderson (2005)) which must be adjusted whenever time step sizes are
altered. Modelling phenotypic state transitions as exponentially-distributed
random variables is a natural generalisation of this trend, which allows us to
rigorously vary the transition probabilities with variable time step sizes, such
as those necessary to enforce numerical stability and/or accuracy conditions.
If a transition from the quiescent state Q to some state X (e.g., P) is governed
by an exponential random process with (time-variant) parameter α(t), then

Pr (S(t +∆t) = X |S(t) = Q) = 1− exp

(

−
∫ t+∆t

t
α(s) ds

)

≈ 1− e−α(t) ∆t

=α(t)∆t +O
(

∆t2
)

. (7)
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When α is constant, we recover (to second order) the commonly-used con-
stant transition probabilities for fixed step sizes ∆t; these may be regarded as
approximations to our more general model here.

By classical stochastic processes theory, Eq. 7 can be regarded as arising from
a nonhomogeneous Poisson process. For any phenotypic state X and time t,
let Xt denote the number of times a cell (including its ancestors and progeny)
makes a Q → X phenotypic transition by time t, and set X0 = 0. Then Xt

is a counting process. If we further assume that the process has independent
(but not necessarily stationary) increments and that

Property 1: Pr (Xt+∆t −Xt ≥ 2) = O (∆t2), and
Property 2: Pr (Xt+∆t −Xt = 1) = α(t)∆t+O (∆t2),

then Xt is a nonhomogeneous (due to the time variation of α) Poisson process
with intensity function α. Such processes can be viewed as the originators of
the exponential phenotypic transition probabilities used in our model, and the
time between Q → X transitions are exponentially-distributed interarrival
times. In particular, Eq. 7 gives the probability that there is at least one
Q → X transition in (t, t +∆t].

In actuality, we wish to model the probability of there being precisely one
Q → X transition in (t, t +∆t]. This probability can be calculated by

Pr (S(t +∆t) = X |S(t) = Q) =Pr (Xt+∆t −Xt = 1)

= exp

(

−
∫ t+∆t

t
α(s) ds

)

∫ t+∆t

t
α(s) ds

≈ e−α(t) ∆tα(t)∆t. (8)

However, by Property 1, Eq. 7 can be regarded as a second-order approxima-
tion of Eq. 8. Furthermore, by construction, the cells remain in the X state
for a nonzero length of time τX , and so if Xt+∆t −Xt ≥ 2 and ∆t < τX , then
only the first Q → X transition has physical meaning. Indeed, we generally
construct α(t) to satisfy α(t) = 0 when S = X , and so the model precludes
the possibility of two Q → X phenotypic transitions in a short time duration.
Hence, the exponential interarrival approximation in Eq. 7 is justifiable.

Lastly, note that the simple relationship between the exponential random vari-
ables and the parameters is useful for model calibration: for a homogeneous
Poisson process with intensity α, the mean time between successive events is
1/α. For non-homogeneous processes, we use the mean intensity 〈α〉 to esti-
mate the mean time between events 1/〈α〉. These times could be measured
in vitro (e.g., the mean time spent in G0 between cell cycles), making this
formulation potentially valuable for quantitative modelling.
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4.3 Volume-averaged model behaviour in the viable rim

For each time t, let Ω(t) denote the (non-hypoxic) viable rim. Let P (t), A(t),
and Q(t) denote the number of proliferating, apoptosing, and quiescent cells
in Ω at time t, respectively. Let N(t) = P + A + Q. If 〈αP〉(t) =

1
|Ω|

∫

Ω αP dV
is the mean value of αP at time t throughout Ω, then the net number of cells
entering state P in the time interval [t, t+∆t) is approximately

P (t+∆t) =P (t) + Pr (S(t +∆t) = P|S(t) = Q)Q(t)−
1

τP
P (t)∆t

≈P (t) +
(

1− e−〈αP〉∆t
)

Q(t)−
1

τP
P (t)∆t, (9)

whose limit as ∆t ↓ 0 (after some rearrangement) is

Ṗ = 〈αP〉Q−
1

τP
P. (10)

Similarly,

Ȧ=αAQ−
1

τA
A (11)

Q̇=2
1

τP
P − (〈αP〉+ αA)Q. (12)

Summing these, we obtain

Ṅ =
1

τP
P −

1

τA
A. (13)

Next, define PI = P/N and AI = A/N to be the proliferative and apoptotic

indices, respectively. We can express the equations above in terms of AI and PI
by dividing by N and using Eq. 13 to properly treat d

dt
(P/N) and d

dt
(A/N).

After simplifying, we obtain a nonlinear system of ODEs for PI and AI:

ṖI = 〈αP〉 (1−AI− PI)−
1

τP

(

PI + PI2
)

+
1

τA
AI · PI (14)

ȦI=αA (1− AI− PI)−
1

τA

(

AI− AI2
)

−
1

τP
AI · PI. (15)
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These equations are far simpler to compare to immunohistochemical measure-
ments, which are generally given in terms of AI and PI.

Lastly, note that Eqs. 14-15 admit two natural time scales τA and τP. We later
show that both of these scales are on the order of 1 day; see Section 6. Suppose
then that we nondimensionalise this system with time scale t ∈ {τA, τP}. Then
supposing that the system reaches steady state for t exceeding 10t to 100t,
this analysis suggests that the local cell state dynamics reach steady state
after 10 to 100 days. (Note that the values of αA and αP may also affect the
time to steady state, although we observe steady-state population dynamics
by 15 days in the main simulation results.) This is significant, because it will
allow us to calibrate the population dynamic parameters (αA, αP) without
the inherent difficulty of estimating time derivatives from often noisy in vitro

and immunohistochemistry data. This result is consistent with our earlier
mathematical analysis in Macklin and Lowengrub (2007), which hypothesised
“local equilibration” of the tumour microstructure, even during growth.

5 Application of the volume-averaged analysis: Relationship be-
tween proliferation and oxygenation in breast ducts; validation
against patient Ki-67 immunohistochemistry

We apply volume-averaged analysis the volume-averaged analysis from Section
4.3 to the viable rim in DCIS to generate biological hypotheses that we test
against immunohistochemistry data. For fixed AI, PI, τA, and τP, we can use
Eqs. 14-15 to determine 〈αP〉 and αA, and ultimately, αP . Indeed, this is the
basis of our calibration procedure.

In Macklin et al. (2009a), we instead treated αA and αP and constant and
solved the nonlinear ODE system for PI and AI to steady state as a function
of 0 ≤ σ ≤ 1. This analysis led us to predict Michaelis-Menten population
kinetics as an emergent model phenomenon: for sufficient oxygen availability,
proliferation saturates, indicating that oxygenation is no longer the primary
growth-limiting factor.

We now test this hypothesis based upon a careful analysis of Ki-67 immuno-
histochemistry in two exemplar ducts (F3 and F19) for a DCIS patient (anon-
ymised case 100019) (Edgerton et al., 2011). See Fig. 2. For each of these
ducts, we calculate the distance of all nuclei and Ki-67 positive nuclei to the
duct wall, the mean distance from the duct centroid to the duct wall (i.e., the
radius Rduct), and the mean duct viable rim thickness T . See the full descrip-
tion of the image processing in Section 5.1, along with C++ code and the
annotated images.
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Fig. 2. Ki-67 immunohistochemistry for ducts F3 (left) and F19 (right) for
anonymised case 100019. Ki-67 positive nuclei stain dark red; Ki-67 negative nuclei
are counterstained light blue. A colour version of this image is available online. An
advance copy of this figure appeared in Macklin et al. (2010a).

Next, we create a histogram of Ki-67-positive nucleus distances to the duct
wall (Fig. 3, first row), all nucleus distances to the duct wall using the same

histogram “bins” (Fig. 3, second row), and divide these to obtain the prolif-
erative index (PI) versus distance from the duct wall (Fig. 3, third row).

Next, we estimate the 3-D steady-state oxygen profile through the ducts (as-
sumed radially symmetric with no variation in the longitudinal direction):

0 = L2
(

σ′′ +
1

r
σ′
)

− σ, 0 < r < Rduct (16)

with boundary conditions

σ(Rduct − T ) = σH, σ′(0) = 0, (17)

The solution is

σ(r) =
σH

I0
(

Rduct−T
L

)I0

(

r

L

)

, (18)

where In is the nth-order modified Bessel function of the first kind, σ is
nondimensionalised by the normoxic oxygen level in non-pathological tissue,
L = 100 µm, and σH = 0.2. The mean value of the oxygen solution in the
viable rim (Rduct − T < r < Rduct) is given explicitly by

〈σ〉 =
(

2LσH

2RductT − T 2

)





RductI1
(

Rduct

L

)

− (Rduct − T ) I1
(

Rduct−T
L

)

I0
(

Rduct−T
L

)



 . (19)

For the duct in F3,
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Fig. 3. Histograms of Ki-67 positive nuclei vs. distance from duct wall (top row), all
nuclei vs. distance from duct wall (middle row), and proliferative index vs. distance
from the duct wall (bottom row). Left column: Duct F3. Right column: Duct F19.
An advance copy of this figure appeared in Macklin et al. (2010a).

Rduct ≈ 188.4634 µm, T ≈ 119.0256 µm, and 〈σ〉 ≈ 0.282145,

and for the duct in F19,

Rduct ≈ 217.5548 µm, T ≈ 97.9602 µm, and 〈σ〉 ≈ 0.280459.

By correlating the oxygen solutions with the PI profiles, we estimate the rela-
tionship between the measured PI and σ in the ducts. We plot these curves for
F3 (dashed curve) and F19 (dotted curve) against the predicted curve (solid
curve) from Macklin et al. (2009a) in Fig. 4. The theoretical predictions and
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Fig. 4. Comparison of the predicted PI curve (solid curve) with data from duct F3
(dashed curve) and duct F19 (dotted curve) for case 100019. An advance copy of
this figure appeared in Macklin et al. (2010a).

measurements agree qualitatively but not quantitatively. We conclude that
while proliferation correlates with oxygen levels throughout the tumour, oxy-
genation alone cannot fully determine PI. Hence, there must be additional
heterogeneities in other microenvironmental factors (e.g., EGF), gene expres-
sion, or protein signalling across the tumour.
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Fig. 5. Comparison of the hypothesised (solid) and measured (dashed and dotted)
PI vs. σ curves for duct F3 (dashed) and duct F19 (dotted). An advance copy of
this figure appeared in Macklin et al. (2010a).

The next natural question is whether we can account for these heterogeneities
with our current functional form by applying the same analysis to the indi-
vidual ducts. We use AI = 0.008838 in each duct, and PI, Rduct, and T as
measured separately for each duct above. For the duct in F3,
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PI = 0.281030, αA ≈ 0.00162405 h−1,

〈αP〉 ≈ 0.0277579 h−1, and αP (S, •) ≈ 0.270331 h−1;

and for the duct in F19,

PI = 0.148045, αA ≈ 0.00129067 h−1,

〈αP〉 ≈ 0.0110190 h−1, and αP(S, •) ≈ 0.109562 h−1.

Using this, we generate PI-vs-σ curves for the individual ducts based upon Eq.
14 and compare them to the measured data in Fig. 5. There is generally much
improved quantitative agreement between the predicted (solid) and measured
(dashed and dotted) curves. The difference in the predicted curves for the two
ducts is due to the substantial difference in αP : αP is much greater for F3,
which has the overall higher PI curve.

We next examine the data in the ducts (Fig. 2) within the context of our
modelling framework and the predicted PI-vs-σ curves to generate additional
biological hypotheses. Notice that the cell density is lower in F3 (Fig. 2 left:
larger nuclei with greater spacing between cells) than in F19 (Fig. 2 right:
smaller nuclei with less spacing between cells). These lead us to hypothesise
that αP decreases with increasing cell density. E-cadherin/β-catenin signalling
may be the physiological explanation of the phenomenon: when E-cadherin is
bound to E-cadherin on a neighbouring cell, β-catenin binds to the phos-
phorylated receptors, blocking its downstream pro-proliferative activity. (See
Section 1.) For higher cell densities, more cell surfaces are in contact with
each other, providing greater opportunities for E-cadherin binding; we conse-
quently hypothesise that cell density correlates with cell cycle blockade by the
E-cadherin/β-catenin pathway, resulting in the apparent relationship between
cell density and αP . Further evidence can be seen in duct F19 (Fig. 2, right):
the majority of the proliferation activity is in a single layer of cells along the
duct wall. Because these cells are adhered to the basement membrane, they
present less surface for E-cadherin binding activity (relative to the interior
cells), resulting in reduced E-cadherin blockade of proliferation.

These hypotheses can be tested by correlating αP with cell density in a larger
number of ducts, performing IHC for β-catenin activity, and correlating β-
catenin-mediated transcription (indicated by presence of β-catenin in the nu-
clei) with cell density and distance from the duct wall. One could use these
data to hypothesise, calibrate, and test new functional forms for αP, such as:

αP(S, σ, •, ◦) = αP (•, ◦)

(

1− E〈E〉
ρ

ρmax

)

(

σ − σH

1− σH

)

, (20)

where ρ is the local cell density, PI ≈ 0 when ρ = ρmax, E is the cell’s (nondi-
mensional) E-cadherin expression, and 〈E〉 is the tumour’s mean E-cadherin
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expression. In such a formulation, αP (•, ◦) determines the cell’s Q → P tran-
sition rate in normoxic conditions with minimal E-cadherin signalling.

5.1 Image processing algorithm

To process each image, we hand-annotated each nucleus with a single red pixel
(RGB (255,0,0) for Ki-67 positive nuclei) or single green pixel (RGB (0,255,0)
for Ki-67 negative nuclei). We hand-drew a magenta curve (RGB (255,0,255))
around the duct outer boundary, and a blue curve (RGB (0,0,255)) around
the peri-necrotic boundary.

We then implemented in C++ a simple image processing routine to analyse
the manually-annotated plot. The code first creates lists of the coordinates
(x, y) ∈ N

2 of the annotated pixels. (0 ≤ x < M and 0 ≤ y < N , where the
image is M pixels wide and N pixels tall.) For any set X , denote #X to be
the number of points in X .

The algorithm creates lists R, G, B, and M of the red, green, blue, and
magenta pixel coordinates from the manual annotation. The remainder of the
algorithm works on evaluating geometric distances amongst members of these
sets. Note that for any x ∈ X , the distance from x to the set Y is given by
miny∈Y |x− y|, where we use the standard Euclidean distance.

With these notions in mind:

(1) We compute

xcentroid =
1

#M





∑

(x,y)∈M

x,
∑

(x,y)∈M

y



 ,

the centroid of the set M. This is the duct centre.
(2) We compute

1

#M

∑

x∈M

|x− xcentroid|.

This is the mean duct radius R (in pixels).
(3) We compute

1

#B

∑

x∈B

miny∈M|x− y|.

This is the mean thickness of the viable rim T .
(4) For each r ∈ R, we compute

d(r) = miny∈M |r− y| ,

the distance from the Ki-67 positive nucleus and the duct wall.

17



(5) For each r ∈ G, we compute

d(g) = miny∈M |g − y| ,

the distance from the Ki-67 negative nucleus and the duct wall.

We then store the distances in 4 and 5 to simple text files, which MATLAB
can process using standard histogram procedures. Because these distances are
given in pixel units, we must convert to physical units according the image
scaling. For these images, 200 pixels correspond to 930 microns.

Complete numerical code (C++ for the image processing, and MATLAB for
creating the histograms and figures), unannotated images, and annotated im-
ages are provided at MathCancer.org. 8 .

6 Patient-independent parameter estimation: expanded detail

We now give expanded detail on our estimates of the parameters that are
common to all patients, based upon literature searches of theoretical and ex-
perimental biology, mathematical analysis, and prior modelling efforts. The
full list of non-specific parameters and their physical meanings is given in
Table 1.

6.1 Cell cycle timescales

We estimate that the cell cycle time τP is 18 hours by the modelling literature
(e.g., Owen et al. (2004)). We estimate that τG1 ≈ 1

2
τP = 9 hours (e.g., see

the S + G2 + M time in Smith and Martin (1973)).

6.2 Apoptosis timescale

The time course from the initial signal to commence apoptosis to final cell lysis
has been difficult to quantify (Hu et al., 1997). Early reviews estimated the
early cellular events in apoptosis comprise a fast process on the order of min-
utes, with digestion of apoptotic bodies occurring within hours of phagocytosis
(Kerr et al., 1994). Hu et al. (1997) conducted a detailed in vivo observation of
apoptosis in the rat hippocampus, observing cells breaking up in 12–24 hours
and the complete elimination of apoptotic bodies within 72 hours. Experimen-
tal work by Scarlett et al. (2000) similarly observed most apoptotic processes
on the order of hours. These provide a bound for τA ≤ 24 h and suggest that

18



Parameter Physical Meaning Value Section

τP cell cycle time 18 hours 6.1

τG1 length of G1 9 hours 6.1

τA apoptosis time 8.6 hours 6.2

τNL necrotic cell lysis time 6 hours 6.3

fNS necrotic cell volume increase 1.0 6.3

τC necrotic debris calcification time 15 days 6.4

L oxygen diffusion length scale 100 µm 6.5

〈λ〉 (= λp = λnp) mean tumour cell oxygen uptake rate 0.1 min−1 6.5

λb
oxygen uptake/decay rate for non-
viable cells and background

0.01〈λ〉 6.5

σH hypoxic oxygen threshold 0.2 6.5

RA maximum adhesion distance 1.214R 6.6

cccr cell-cell repulsive force coefficient 10.0ν µm/min 6.6

ccbr cell-BM repulsive force coefficient cccr 6.6

ncca cell-cell adhesion potential exponent 1 6.6

nccr cell-cell repulsion potential exponent 1 6.6

ncba cell-BM adhesion potential exponent ncca 6.6

ncbr cell-BM repulsion potential exponent nccr 6.6

M maximum value of |∇ψ| 1 6.6

Table 1
Patient-independent parameters and values for DCIS.

apoptotic bodies are eliminated in under 48 hours after cell lysis. In total, the
experimental observations in the literature lead us to estimate τA ≈ O(10h).

We estimate τA for breast epithelial cells based upon the hypothesis that can-
cerous and noncancerous cells use the same basic mechanisms of proliferation
and apoptosis, only with altered frequency (Hanahan and Weinberg, 2000).
Hence, we postulate that τA and τP are the same for DCIS cells and noncancer-
ous breast epithelial cells. The total number of cells N(t) in a fixed region of
breast epithelium is given by

Ṅ =
(

1

τP
PI−

1

τA
AI
)

N, (21)

where PI and AI are the proliferative and apoptotic indices (the fractions of
proliferating and apoptosing cells), respectively (supplementary material). If
we assume that noncancerous breast epithelial tissue is in homeostasis (when
averaged through the duration of the menstrual cycle), then Ṅ = 0, and

τA PI = τP AI. (22)
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In Lee et al. (2006b), the mean proliferative and apoptotic indices of non-
cancerous breast epithelial cells in several hundred pre-menopausal women
were measured at 0.0252±0.0067 and 0.0080±0.0006, respectively. While the
AI and PI can vary considerably in time due to hormone fluctuation during
the menstrual cycle (Navarrete et al., 2005), when averaged over many women
(who fall at different points in this cycle), the effects of the monthly variation
should cancel. Assuming that τP = 18 h, we estimate τA ≈ 5.71 h. This is
consistent with the experimental literature; see Macklin et al. (2010a).

Since DCIS occurs predominantly in postmenopausal women, any effect of
monthly variation with the menstrual cycle is not pertinent for the majority
of DCIS patients. Lee et al. (2006b) measured the PI and AI in several hundred
postmenopausal women at 0.0138± 0.0069 and 0.0043± 0.0007, respectively.
Using these data gives τA ≈ 5.62 h. The similarity of the estimates in pre- and
post-menopausal women supports our working hypothesis that τA and τP are
relatively fixed for the cell type, even in different hormonal environments.

We now account for detection shortcomings in the immunostaining. (See Duan
et al. (2003) for a good overview of the current apoptosis marking methods
in histologic tissue samples.) The AI measurements in Lee et al. (2006b) were
obtained by TUNEL assay, which detects DNA fragmentation. According to
the detailed work on Jurkat cell apoptosis in Scarlett et al. (2000), there was
an approximately 3-hour lag between the inducement of apoptosis (observed
as rapid changes in mitochondrial membrane voltage potential and the ratio
of ATP to ADP) and the detection of DNA laddering and chromatin conden-
sation. Cleaved Caspase-3 activity was negligible for the first 60 minutes and
steadily climbed thereafter, peaking after 180 minutes and reaching approxi-
mately 10% of that peak in 50-60 minutes. On this basis, we would expect that
TUNEL-assay-based AI figures fail to detect approximately the first 3 hours
of apoptosis, and cleaved Caspase-3-based AI stains could underestimate the
first one-to-two hours. Thus, we increase our estimate for τA to 8.6 hours.
This also gives “correction factors” to account for undetected apoptotic cells
by TUNEL assay and cleaved Caspase-3 immunostaining:

AIactual ≈
8.6

5.6
AITUNEL, and (23)

8.6

7.6
AICaspase-3 ≤ AIactual ≤

8.6

6.6
AICaspase-3. (24)

6.3 Necrosis parameters

Necrotic cells lack sufficient energy to maintain ion pumps that regulate intra-
cellular H+, K+, Na+ and Ca+ concentrations. K+ and Na+ play key roles in
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τC (days) 0.5 1 5 15 30

Fraction of core calcified after 30 days (%) 94.0 83.7 51.1 6.9 0.0

Table 2
Fraction of the necrotic core occupied by calcifed debris after 30 days of simulation.

modulating cell volume; pumps for these ions are active during apoptosis to
promote orderly cell shrinking and prevent premature lysis (Majno and Joris,
1995; McCarthy and Cotter, 1997; Barros et al., 2001; Cantoni et al., 2005). On
this basis, we estimate τNL < τA (8.6 h). This is consistent with experimental
reports of necrotic cell lysis times ranging from “immediate” (e.g., Cantoni
et al. (2005)), 6-7 hours (e.g., in Majno and Joris (1995)), and “overnight”
(e.g., Mattes (2007)). We use τNL = 6 hours for our initial estimate.

There has been a wide range of reported cell volume increase (fNS) in necrotic
cells prior to lysis. Jun et al. (2007) reported cell volume increase of approxi-
mately 30% within 60 minutes of the onset of necrosis in SN4741 neuron cells.
Necrotic “blebs” on cultured liver cells were reported to increase their volume
linearly in time for over 200 minutes in Barros et al. (2003), which supports
our linear necrotic core volume increase, and suggests τNL is on the order of
hours. Grönroos et al. (2005) observed a 1.5-fold increase in cell volume in
necrotic renal tubular cells in approximately 12 hours. Wu et al. (2010) ob-
served necrotic cells swelling between two- and five-fold (1 ≤ fNS ≤ 4) after
24 hours in rat adrenal medulla cells. We use fNS = 1 as our initial estimate;
other values are briefly discussed in the supplementary material, but do not
significantly affect the long-term rate of tumour growth.

6.4 Calcification timescale

Little-to-no literature data are available on the calcification process for necrotic
breast epithelial cells. The best available experimental data are generally an-
imal time course studies of arterial calcification; we use these to estimate the
order of magnitude of τC. Time course studies on post mortem cardiac valves
by Jian et al. (2003) observed significant tissue calcification between 7 days
(10% increase in Ca incorporation) and 14 days (40% increase) after injection
by TGF-β1. Lee et al. (2006a) examined a related process (elastin calcifica-
tion) using a rat subdermal model; calcification occurred gradually over two
to three weeks. Gadeau et al. (2001) measured calcium accumulation in rab-
bit aortas following oversized balloon angioplasty injury. Calcified deposits
appeared as soon as 2-4 days after the injury, increased over the course of
8 days, and approached a steady state between 8 and 30 days. Hence, we
estimate τC is on the order of days to a few weeks.

To sharpen our estimate, we conducted a parameter study on τC using a sim-
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plified form of the model in Macklin et al. (2009a). We varied τC from 12 hours
to 30 days and calculated the percentage of the necrotic core occupied by calci-
fied debris (calculated by area). The results are in Table 2. Calcification times
under 15 days lead to necrotic cores that were nearly entirely calcified; this is
not typically observed in H&E images of DCIS. On the other hand, the 30-day
calcification time lead (as expected) to a complete absence of microcalcifica-
tions in the core at time 30 days. Edgerton et al. (2008) hypothesised that
DCIS tumours may grow to steady state in as little as two-to-three months,
and so we expect microcalcifications by this time. Hence, our sharpened esti-
mate of τC is 15 days, consistent with the literature.

6.5 Oxygen transport parameters

By Owen et al. (2004), the oxygen diffusion length scale L is ∼ 100 µm, and
the mean cellular oxygen uptake rate 〈λ〉 (in the viable rim) can be estimated

at approximately 0.1 min−1 via L =
√

D/〈λ〉 and their published value of D.

Other values of D (e.g., from Grote et al. (1977) and Evans et al. (1981))
give 0.1 min−1 ≤ 〈λ〉 ≤ 10 min−1. This does not majorly impact our results
because (1) we calibrate the proliferation and oxygenation sub-models in a self-
consistent manner, and (2) 〈λ〉 acts as an oxygen transport time scale, and all
these values yield fast equilibration relative to the proliferation timescale.

To estimate the hypoxic threshold σH, we examine the mitosis function km(σ)
in Ward and King (1997). At the step function limit, km(σ) ∝ H(σ − σc),
where H is the Heaviside function. The authors determined experimentally
that σc ≈ 0.2 when σ is nondimensionalised by the far-field substrate value
in non-pathologic, well-vascularized tissue. Because the step function limit is
similar to αP, our σH is analogous to σc in Ward and King (1997), and as we
have nondimensionalised oxygen similarly, we set σH = 0.2.

We observe in our histopathology images that the quiescent and proliferat-
ing viable tumour cells have the same general size; this suggests that the
quiescent tumour cells are relatively metabolically active compared to non-
cancerous, long-term quiescent cells that generally are smaller with condensed
nuclei (relates to lack of transcriptional activity), reduced mitochondrial pop-
ulations (Freyer, 1998), and less cytosol. Hence, we estimate that λp ∼ λnp.
This is consistent with evidence that a cell’s mitochondrial and cytoplasmic
volumes are proportional (James and Bohman, 1981), and that oxygen uptake
(Hystad and Rofstad, 1994) correlates with mitochondrial volume. Similarly,
experiments report a linear correlation between glucose uptake and cell vol-
ume (Miller, 1964). For simplicity, we set λp = λnp and λb = 0.01〈λ〉. In
the supplementary material, we show that setting λp/λnp > 1 destabilises the
perinecrotic border, and is not consistent with typical patient histopathology.
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distance from cell
center r (µm)

cccr
ν

|∇ψ(r)|
(µm/min)

R− 0.50 = 9.4530 0.02524

R− 1.00 = 8.9530 0.10095

R− 2.00 = 7.9530 0.40379

R− 3.00 = 6.9530 0.90852

distance from cell
center r (µm)

cccr
ν

|∇ψ(r)|
(µm/min)

R− 0.50 = 9.4530 0.05047

R− 1.00 = 8.9530 0.20189

R− 2.00 = 7.9530 0.80757

R− 3.00 = 6.9530 1.81704

Table 3
Cell relaxation rate given by |∇ψ| for R = 9.953 µm, nccr = 1, and cccr/ν = 10.00
µm/min (left) and 20.00 µm/min (right), for small and intermediate deformations.
The value of M does not play a role when r > RN (typically 4 to 7 µm).

6.6 Cell mechanics

When patient-specific nuclear size measurements are unavailable, we consider
nuclear grade, where the tumour cell diameter is compared to the size of a red
blood cell (RBC: generally 6 to 8 µm (e.g., Dao et al. (2003))). Low-grade
DCIS nuclei are 1.5 to 2.0 RBCs across (4.5 µm ≤ RN ≤ 7 µm), high-grade
are 2.5 RBCs or more (Rn ≥ 7.5 µm); intermediate grade lies between these
(Tan et al., 2001).

We estimate the maximum adhesive interaction distance RA using published
measurements of breast cancer cell deformations. Byers et al. (1995) found the
deformation of MCF-7 (an adhesive, moderately aggressive breast cancer cell
line) and MCF-10A (a non-malignant but transformed cell line) breast epithe-
lial cells to be bounded around 50% to 70% of the cell radius in shear flow
conditions; this is an upper bound on RA. Guck et al. (2005) measured breast
epithelial cell deformability (defined as additional stretched length over relaxed
length) after 60 seconds of stress. Deformability increased with malignant
transformation: MCF10 deformed 10.5%, MCF7 deformed 21.4%, MCF7 de-
formed 30.4% after weakening the cytoskeleton, and MDA-MB-231 (an aggres-
sive, often motile cancer cell line) deformed 33.7%. Because solid-type DCIS
is adhesive but not invasive, we use the MCF7 estimate and set RA = 1.214R.

We also turn to the experimental literature to estimate the overall magnitude
of the mechanical forces. Cell mechanics can operate over a large range of
time scales (Bursac et al., 2005), ranging from ∼ 0.1 seconds for immediate
viscoelastic responses to 1 minute or more when exposed to prolonged stresses
(Matthews et al., 2006). Matthews et al. (2006) applied magnetic forces to
microbeads attached to cultured endothelial cells to measure their cytoskeletal
response to mechanical stress. For longer-duration stresses, they observed bead
displacement velocities on the order of 0.1 µm/min to 10 µm/min (after early
transient dynamics). (See Figs. 6 and 7 in Matthews et al. (2006).) We find
that cccr/ν = 10 µm/min gives |Fccr| /ν within this range for typical cell-cell
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interaction distances (R − 3) µm < r < (R − 0.5) µm; see Table 3. This is
consistent with Macklin et al. (2009a), where setting cccr/ν = 8 µm/min and
ccbr/ν = 5 µm/min prevents unreasonable simulation behaviour (overlapping
cell nuclei and cell penetration of the BM). In the supplementary material, we
show that our simulation results are resilient to error in cccr: the cell density
and rate of tumour growth exhibit little change over a broad range of cccr. For
simplicity, we set M = 1, cccr = ccbr = 10ν µm/min, and nccr = ncbr = 1 (to
model anticipated nonlinear but smooth cell mechanical responses).

7 Numerical methods

We implement the model using object-oriented ANSI C++, where each agent
is an instance of a Cell class. Each cell object is endowed with an instance of
a Cell State class, which contains the cell phenotypic parameters (αP , αA,
τP , etc.), volumes (VS, VN , V ), radii (RN , R), maximum interaction distances
(RA, RA, recorded as multiples of R), position x, and velocity v. We order the
cells with a doubly-linked list structure: each agent is given the memory ad-
dresses of the previous and next cells. This allows us to easily delete apoptosed
cells and insert new daughter cells following proliferation events. Wrapping the
phenotypic properties in a Cell State class makes it easy to pass heritable
properties from parent to daughter cells in a generalised manner.

We discretise microenvironmental field variables (e.g., oxygen σ) on an inde-
pendent Cartesian mesh with uniform spacing ∆x = ∆y = 0.1L, where L
is the oxygen diffusion length scale. We represent the BM morphology with
an auxiliary level set function, and we use an auxiliary data structure to re-
duce the computational cost of cell-cell interaction testing and evaluation. (See
Section 7.1.)

We now describe the program flow of this numerical implementation. In the
discussion below, N(t) denotes the total number of cells at time t.

(1) Initialisation Routines:
(a) Parse simulation settings file: Parse an XML file containing all

information on the simulation domain, cell types and initial arrange-
ment, phenotypic parameters, data output times, etc. Set global vari-
ables such as the current simulation time t, the current (dynamic)
time step size (∆t, initially zero), etc.

(b) Initialise cells: Create new cell objects and place them within the
computational domain as indicated in the prior step. For each cell,
set its phenotypic parameters, and randomly select its state S with
probabilities specified in the settings (e.g., to match immunohisto-

24



chemistry). Lastly, set its progression within its state randomly (with
uniform distribution), and update its volume, etc. accordingly.

(c) Initialise BM morphology: Create a level set function d on a mesh
(with ∆x = ∆y = 1 µm) to represent the basement membrane mor-
phology as specified in the settings. Discretise the normal vector n on
the same mesh, computing the gradient n = ∇d either analytically
or by the gradient discretisations in Macklin and Lowengrub (2006).

(d) Initialise microenvironmental variables: Introduce a regular Car-
tesian mesh and discretise the microenvironmental field variables on
that mesh. For oxygen, initialise σ ≡ σB and solve to steady state.

(2) Main program loop: While t < tmax:
(a) Update microenvironmental variables: Each microenvironmen-

tal variable u must be updated from u(x, t − ∆t) to u(x, t). Solve
the various microenvironmental PDEs using standard finite differ-
ence schemes (Macklin and Lowengrub, 2005, 2008; Macklin et al.,
2009b). Compute volume-weighted, upscaled uptake and other re-
action rates as necessary. Use independent time step sizes for each
variable according to standard CFL stability criteria, until each vari-
able has been updated to time t.

(b) Update cell-cell interactions: Update the data structure for cell-
cell interaction testing and evaluation. See Section 7.1.

(c) Update the cells: For each cell:
(i) Progress the current cell state: Update the cell with the appro-

priate submodel for its previous state S(t − ∆t) until reaching
the current simulation time t. Any field variable values that are
necessary for computing the cell phenotypic transition probabil-
ities (e.g., oxygen) are interpolated at the cell’s position x.

(ii) Choose the next cell state: If the cell was not quiescent at the
previous time step, then set S(t) = S(t − ∆t) unless it has
been altered in (2c.i). If S(t − ∆t) = Q, then choose S(t) by
evaluating the (exponentially-distributed) random probabilities
as described in Section 7.2. We note that the probabilities can
likely be approximated by their linear Taylor expansions:

Pr (S(t +∆t) = S2|S(t) = S1) ≈ α12(S(t), •, ◦)∆t. (25)

we are testing this acceleration among other ongoing code opti-
misations.

(iii) Set the cell velocity: Set v according to Eq. 4. Use the optimi-
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sation in Section 7.1 to truncate the summation to a smaller set
of interacting cells.

(d) Set ∆t: Dynamically choose the simulation time step size via:

∆t =
ǫ

max {|vi|}
N(t)
i=1

. (26)

Here, ǫ is the desired accuracy in the cell position; we use ǫ = 1 µm.
Note that ∆t is independent of the interaction and microenvironmen-
tal mesh sizes, as the agents themselves are lattice-free.

(e) Update cell positions: For each cell, update the position using:

x(t) =x(t−∆t) + v∆t (27)

While we use the forward Euler difference for simplicity, improved
methods (e.g., Runge-Kutta (Gottlieb and Shu, 1997; Gottlieb et al.,
2001)) are straightforward to implement.

(f) Update the simulation time: Increment t by ∆t.

Each step in the main program loop requires at most iterating through the list
of the cell agents. If interaction testing can be made similarly efficient, then
the overall computational effort is linear in the number of cells. To attain
this, we use an auxiliary cell-cell interaction testing data structure that can
be constructed linearly in the number of cells, and allows a truncation of the
summation in each cell’s velocity in Eq. 4, thus rendering the overall algorithm
linear in the number of cells. See Section 7.1.

7.1 Accelerated cell-cell interaction testing

Let {k}N(t)
k=1 = {1, 2, 3, · · · , N(t)} be a list of all simulated cells in the com-

putational domain D at time t. We construct a data structure that lists all
possible cell-cell interactions at any point in the computational domain D. We
first introduce a uniform Cartesian mesh M = {xi,j} = {(xi, yj)} (the inter-

action mesh) with spacing ∆x = ∆y = 1µm. At each xi,j ∈ M, let {ki,j
m }

Ni,j(t)
m=1

be the list of (potentially) interacting cells at xi,j at time t.

Step 1: Compute the maximum cell-cell interaction distance by

Rcca,max =max
{

Rk
A

}N(t)

k=1
. (28)

Step 2: For each xi,j ∈ M, set ki,j
0 = 0 and Ni,j(t) = 0. Because no cell

26



has index 0, this denotes the case of 0 possible interactions at xi,j.

Step 3: For each cell k and for each xi,j satisfying:

|xk − xi,j | ≤Rcca,max +Rk
cca, (29)

set:

ki,j
Ni,j(t)+1 = k (append the cell to the list at xi,j) (30)

Ni,j(t) =Ni,j(t) + 1. (increment the total at xi,j) (31)

At each xi,j , the result is a list of all cells that can interact with a cell centred at
xi,j. In C++, we implement this scheme as a singly-linked list of cell memory
addresses at each xi,j ∈ M; a NULL pointer indicates either an empty list
(Ni,j(t) = 0) or the end of the list (list member Ni,j(t) points to NULL).

For fixed ℓ and x ∈ D, we use this list to evaluate expressions of the form

for all cells k ∈ {k}N(t)
k=1 \ {ℓ} compute f (cellk, cellℓ) (x), (32)

such as
N(t)
∑

k=1
k 6=ℓ

f (xk,xℓ) . (33)

Let xi,j denote the closest interaction mesh point to xℓ (the position of cell ℓ).
Then we evaluate Eq. 32 by truncating it to the members of the list at xi,j:

for all cells k ∈
{

ki,j
m

}Ni,j(t)

m=1
\ {ℓ} compute f (cellk, cellℓ) (x). (34)

In the example above, we truncate the summation to

Ni,j(t)
∑

m=1
k
i,j
m 6=ℓ

f
(

x
k
i,j
m
,xℓ

)

. (35)

Setting the interaction mesh spacing to 1 µm sufficiently resolves cells (gen-
erally 10 to 20 µm in diameter), which reduces the impact of the nearest-
neighbour approximation above; in practice, a larger spacing may suffice.

Because our interaction potentials have compact support, there is a fixed upper
bound M1 for the number of operations required to update the interaction
lists for each cell; the operation is linear in the number of cells. Similarly, each
interaction mesh point xi,j has a fixed maximum number of list elements M2,
and so evaluating Eq. 34 for all cells 1 ≤ ℓ ≤ N(t) is linear in the number of
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cells. Contrast this with Eq. 32, which for each cell ℓ scales with N(t); iterating
this non-truncated form over all cells thus requires N(t)2 computational effort.

7.2 Evaluating probabilities

Suppose we have (assumed independent) random variables X1, . . . , Xn with
cumulative probability distributions Fi(t), 1 ≤ i ≤ n. We test for the occur-
rence of one of the events Xi in the interval [t, t +∆t] by:

(1) Choose r ∈ [0, 1] with uniform random distribution. Numerically, we use
the ran2 pseudorandom generator procedure from Press et al. (1992); the
Mersenne twister pseudorandom generator is also commonly used.

(2) Set pi = Fi(t+∆t)− Fi(t) for 1 ≤ i ≤ n. Define p0 = 0. Set a = b = 0.
(3) For 1 ≤ i ≤ n:

(a) Set a = b and b = a+ pi. (i.e., a =
∑i−1

j=0 pj and b =
∑i

j=0 pj.)
(b) If a ≤ r ≤ b, then say that event Xi has occurred in [t, t +∆t], and

end the procedure. Otherwise proceed.
(4) If we exit the loop, none of the Xi events has occurred in [t, t +∆t].

We note that in principle, this procedure can break down for large ∆t, as
∑n

j=1 pj can exceed 1. In practice, we only evaluate probabilities on short time
intervals, thus the pi are small, and this is not an issue in simulations.

8 MultiCellXML: An open multicell simulation data format

We have developed a human-readable, XML-based data format for agent-
based, multicell simulations (MultiCellXML), which includes the random seed
state, global variables, information on (and filenames of) microenvironmental
field variables, and a list of each cell object and its current state. This structure
allows us to easily parse the data (using standardised XML parsers, such as
Expat (Clark, 2007), xmlParser (Berghen, 2009), and TinyXML (Thomason
et al., 2010)) for use in data visualisation and post-processing. The list of cells
in the XML file is very similar to the object-oriented Cell data structure in
the simulator, making the format well-suited to resuming simulations from
saved states. Modifying simulation parameters during a simulation can be
readily achieved with simple plaintext search/replace operations in the XML
files. We note that the MultiCellXML format is under active development;
readers should reference the project website 9 for the very latest standards,
documentation, and software utilities. We put forth our data format as a

9 http://multicellxml.sourceforge.net
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potential draft for inclusion in the standard being developed by Sluka et al.
(2011).

We begin with XML header information (<?xml>) for XML 1.0 standards com-
pliance, followed by a “root” <data set> tag. In the <data source> section,
we include information on the originating simulation software (<simulator>),
the user (<user>), and any publication information that may assist the recipi-
ent of a data file in (1) locating the original source of the data, and (2) proper
academic citation (<reference>). See Fig. 6. Future MultiCellXML versions
may include reference and citation information for the simulation software.

Following the <data source> section, the <globals> section includes infor-
mation such as the current simulation time and the random seed state–this is
important for resuming saved simulation states without affecting the pseudo-
random number generator. Where possible, we include information on physical
units as XML tag attributes. We note that because this was initially a for-
mat developed for internal use, we have not been entirely consistent in our
conventions–improvements are planned in future drafts of the file specifica-
tion. For dimensionless quantities, the scale should ideally be stated (e.g., as
an additional XML attribute):

<local oxygen units="dimensionless" scale="far-field">0.84</local oxygen>

In future drafts, we may include a new <scales> section to facilitate this.

The file format continues with a list structure of all the cells (<cell list>),
with essentially all internal cell variables (i.e., member data of the Cell class)
listed clearly. We give each <cell> both a numeric type (<cell type code>)
to assist comparing and classifying cells in software, and a human-readable
type (<cell type text>) to assist data recipients with interpreting the data.
See Fig. 7. Note that we have included “type” attributes to indicate Boolean
variables, rather than units. In future file version drafts, we may include both
“type” and “units” attributes to all <cell> data fields. However, we can gen-
erally assume that the presence of units indicates a non-Boolean variable, and
the presence of a Boolean type obviates “units.”

Due to historical reasons stemming from code development, each <cell> is
split into <cell properties> and <cell state> sections; future versions of
the data standard will likely merge these into a single <cell state> section,
because many cell properties tend to change over time due to the cells’ expo-
sure to differing microenvironments.

After all data files have been listed, we include a <global variables> section
with a list of all saved field variables and file formation information. See Fig.
8. Note that we have included the full path of each data file; often all the files
(including the XML file) are saved in the same directory, so postprocessing may
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<?xml version="1.0" encoding="UTF-8" ?>

<data_set MultiCellXML_version="1.0">

<data_source>

<filename>data/output00000117.xml</filename>

<created>29 July 2010</created>

<simulator>

<program_name>DCIS_2D</program_name>

<program_version>1.38</program_version>

<compiled></compiled>

<author>Paul Macklin</author>

<contact>Paul.Macklin@MathCancer.org</contact>

<URL>http://MathCancer.org</URL>

</simulator>

<user>

<name>Paul Macklin</name>

<contact>Paul.Macklin@usc.edu</contact>

</user>

<reference>

<citation>Macklin et al. J. Theor. Biol. (2011) (in review)</citation>

<URL>http://MathCancer.org/Publications.php#macklin11_jtb</URL>

<note>User notes may go here.</note>

</reference>

</data_source>

<globals>

<time units="minutes">7020</time>

<next_output_time units="minutes">7020</next_output_time>

<frame_number>117</frame_number>

<random_seed_state>769969952</random_seed_state>

<Domain_width_in_microns>1000</Domain_width_in_microns>

<Domain_height_in_microns>340</Domain_height_in_microns>

</globals>

...

Fig. 6. Start of a MultiCellXML file: The first tag is for XML 1.0 standards com-
pliance. The <data source> section indicates the source of the data, including the
originating program, information on the user, and requested reference for citation
(if any). The <globals> section gives information on program globals, including (in
particular) the current simulation time and the random seed state.

need to strip part of the path by comparison to the <filename> filed in the
<data source> section. Due to the large size of 2-D and 3-D double-precision
data arrays, we opted for a binary data format. For increased compatibility, we
choose the MATLAB .MAT (Level 4) file format, which is relatively simple
to implement directly from the published file format standard (Mathworks,
2010), and is simple to read and write with common open source software
(e.g., Octave) as well as MATLAB. In the source code to follow, we include
C++ code to read and write these MATLAB data.

Lastly, note that a primary goal of our specification is to make the for-
mat as human-readable as possible, rendering the format (partially) “self-
documenting”. This will make it simpler to interpret archived data long after
the originating software is out of use, thus eliminating the need for reverse
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...

<cell_list>

<cell>

<cell_properties>

<cell_type_code>0</cell_type_code>

<cell_type_text>DCIS cell</cell_type_text>

<radius units="microns">9.95299956207</radius>

<nuclear_radius units="microns">5.295</nuclear_radius>

<volume units="cubic microns">4130.00487398</volume>

<mature_volume units="cubic microns">4130.00487398</mature_volume>

<solid_volume units="cubic microns">413.000487398</solid_volume>

<cell_adhesion_1_level units="dimensionless">1</cell_adhesion_1_level>

<cell_adhesion_2_level units="dimensionless">0</cell_adhesion_2_level>

<matrix_adhesion_level units="dimensionless">1</matrix_adhesion_level>

<calcite_level units="dimensionless">0</calcite_level>

<mean_cell_cycle_time units="minutes">1080</mean_cell_cycle_time>

<mean_G1_time units="minutes">540</mean_G1_time>

<mean_time_to_apoptosis units="minutes">47196.6</mean_time_to_apoptosis>

<mean_time_to_mitosis units="minutes">115.27</mean_time_to_mitosis>

<cell_adhesion_exponent units="dimensionless">1</cell_adhesion_exponent>

<BM_adhesion_exponent units="dimensionless">1</BM_adhesion_exponent>

<calcite_adhesion_exponent units="dimensionless">1</calcite_adhesion_exponent>

<cell_repulsion_exponent units="dimensionless">1</cell_repulsion_exponent>

<BM_repulsion_exponent units="dimensionless">1</BM_repulsion_exponent>

<cell_adhesion_max_distance units="x radius">1.214</cell_adhesion_max_distance>

<BM_adhesion_max_distance units="x radius">1.214</BM_adhesion_max_distance>

<calcite_adhesion_max_distance units="x radius">1.214</calcite_adhesion_max_distance>

</cell_properties>

<cell_state>

<is_cycling type="Boolean">true</is_cycling>

<is_quiescent type="Boolean">false</is_quiescent>

<is_apoptosing type="Boolean">false</is_apoptosing>

<is_hypoxic type="Boolean">false</is_hypoxic>

<is_necrosing type="Boolean">false</is_necrosing>

<apoptosis_time units="minutes">360.85</apoptosis_time>

<necrosis_time units="minutes">0</necrosis_time>

<cell_cycle_time units="minutes">0</cell_cycle_time>

<Position units="microns">(86.5665990925,53.5000597051,0)</Position>

<Velocity units="microns/minute">(-0.108426856979,0.213070920989,0)</Velocity>

</cell_state>

</cell>

<cell>

...

</cell>

...

</cell_list>

...

Fig. 7. Main content of a MultiCellXML file: Within the <cell list> section, we
save each individual cell agent’s data within a set of <cell></cell> tags, including
<cell properties> and the <cell state>. In future revisions, these fields may
be merged due to the fact that cell properties change in time. Note 1: These fields
have been minimised from the actual published datasets to simplify the presentation.
Note 2: the <is debris> tag is from an earlier version of the model, but unused
here.
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...

<global_variables>

<variable>

<name>oxygen</name>

<format version="Level 4">MATLAB</format>

<filename>data/oxygen_00000117.mat</filename>

</variable>

<variable>

<name>Duct_Wall_Level_Set</name>

<format version="Level 4">MATLAB</format>

<filename>data/level_set.mat</filename>

</variable>

</global_variables>

</data_set>

Fig. 8. End of a MultiCellXML file: After the cell list section, the
global variables section gives a list of all associated external field data (here
saved in MATLAB format).

engineering–hence our choice of human-readable, non-binary data. While this
results in much larger files, we regard data compression as a separate software
problem from the specification of content. Compression can readily be applied
to the data files after creation with widespread software, such as gzip.

8.1 Benchmark datasets

To demonstrate our open data format and serve as benchmark datasets, we
are releasing 10 the full datasets for simulation times 0, 15, 30, and 45 days
from the “baseline” simulation in the main text. Included files:

(1) output00.zip: contains all data from 0 days:
(a) output000000000.xml: MultiCellXML data
(b) oxygen 000000000.mat: (dimensionless) oxygen data
(c) levelset.mat: basement membrane morophology

(2) output15.zip: contains all data from 15 days:
(a) output000000360.xml: MultiCellXML data
(b) oxygen 000000360.mat: (dimensionless) oxygen data
(c) levelset.mat: basement membrane morophology

(3) output30.zip: contains all data from 30 days:
(a) output000000720.xml: MultiCellXML data
(b) oxygen 000000720.mat: (dimensionless) oxygen data
(c) levelset.mat: basement membrane morophology

(4) output45.zip: contains all data from 45 days:
(a) output0000001080.xml: MultiCellXML data

10 No license applies here, aside from standard scientific citation ethics. Please ref-
erence Macklin et al. (2011).
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(b) oxygen 000001080.mat: (dimensionless) oxygen data
(c) levelset.mat: basement membrane morophology

The most up-to-date version of these datasets will be maintained at the
MultiCellXML project website.

8.2 Sample post-processing

Because the cell data are saved in a standardised XML configuration, post-
processing is a combination of XML parsing and visualisation (to interpret
the data). In our implementation, we choose the relatively compact TinyXML
library (Thomason et al., 2010) with customised interfaces to simplify the
process; this allows us to distribute code as fully self-contained, without need
for installation of external libraries. We use the open source EasyBMP library
(Macklin, 2005–present) for image operations. Source code is provided at the
MultiCellXML project website; this software has been tested in Windows (with
the mingw implementation of the g++ compiler), Linux, and OSX 10.6 in 32-
bit and 64-bit environments.

In our post-processing code, we do the following:

(1) Parse the <cell list> XML data:
(a) Create a singly-linked list of a simplified cell objects (read from the

<cell list> section), consisting primarily of cell location, radius,
degree of calcification, and phenotypic state.

(b) Plot the cells in a temporary BMP image (in the program memory
space–this is not actually saved as a file) for use in further geometric
processing.

(c) Plot a virtual “buffer” around all the cells to help fill in holes in the
viable rim–this is essential for later cell density calculations, as well
as for identifying the entire viable rim.

(2) Fill remaining holes in the viable rim to ensure its correct identification.
(3) Crop the virtual images at the leading and trailing edges to eliminate

the “edge effects” and best match the patient data images. Remove the
corresponding cell objects from the linked list.

(4) Count the total, proliferating, and apoptotic cells within the viable rim.
Use these to calculate the proliferative index (PI) and apoptotic index
(AI).

(5) Count the number of coloured pixels of the viable rim in the temporary
image, and use this to calculate the area of the viable rim. (1 pixel is 1
µm2.)

(6) Use the known length of the cropped domain to calculate the mean viable
rim thickness.
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(7) Use the viable rim area and total cell count in the cropped areas to
calculate the cell density.

(8) Calculate the position of the farthest tumour cell (uncropped). Do the
same for calcified cells.

(9) Use the known total numbers of (uncropped) viable tumour cells to find
the 95% position (i.e., xV95 such that 95% of the tumour is in the region
{(x, y) : x ≤ xV95}). Do the same for calcified cells.

(10) Append these data to PPdata.txt.
(11) Once done looping over all specified files, write legend.txt to document

the structure of PPdata.txt

To use this code, compile it according to your compiler instructions. (g++ users
may use the supplied makefile. Windows 32-bit binaries are included in our
distributions. Please note that the compiler optimisations are oriented towards
32-bit Core2 Intel processors and above.) To apply the code to the supplied
data for time 30 days, type:

> ./PostProcessing output00000720.xml

To apply the code to all the supplied data, type:

> ./PostProcessing output*.xml

This software is licensed under the GPL 3.0. It is packaged with TinyXML
(zlib/libpng license – see Thomason et al. (2010)) and EasyBMP (Modified
BSD license – see Macklin (2005–present)). We request that users cite this
paper and the project website in their “methods” section when publishing
results that make substantial use of the code or derivative works.

8.3 Sample visualisation

Visualisation is performed similarly, but requires much less processing. We
plot each cell as a circle with correct colour, overlay a solid nucleus, and draw
a dark border. We draw the basement membrane based upon the zero contour
of the level set function. Afterwards, we overlay a scale bar, label the time,
and save the image.

We regard image creation and image compression as separate software prob-
lems. We use the BMP format because it is simple, universally understood,
can be implemented without need for complex external libraries, and does
not introduce visual artefacts to the data (in contrast to formats with lossy
compression, such as JPEG). The lack of visual artefacts is also helpful for
pixel-based image processing operations by other software. Users can readily
compress the images using standard tools (e.g., ImageMagick and GIMP), or
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combine the BMP frames into an (uncompressed) AVI animation using tools
such as EasyBMPtoAVI (Macklin, 2006–present).

Source code is provided at the MultiCellXML project website; this software
has been tested in Windows (with the mingw implementation of the g++
compiler), Linux, and OSX 10.6 in 32-bit and 64-bit environments. To use
this code, compile it according to your compiler instructions. (g++ users may
use the supplied makefile. Windows 32-bit binaries are included in our dis-
tributions. Please note that the compiler optimisations are oriented towards
32-bit Core2 Intel processors and above.) To apply the code to the supplied
data for time 30 days, type:

> ./visualize_DCIS_2D output00000720.xml

This software is licensed under the GPL 3.0. It is packaged with TinyXML
(zlib/libpng license – see Thomason et al. (2010)) and EasyBMP (Modified
BSD license – see Macklin (2005–present)). We request that users cite this
paper and the project website in their “methods” section when publishing
results that make substantial use of the code or derivative works.

9 Additional numerical studies

We performed additional numerical studies, which we cut from the main
manuscript but nonetheless support and/or further investigate the model, and
may be of interest to the reader.

9.1 Analysis of calibration discrepancies

To understand the discrepancy in the mean PI between our simulation and the
patient data for future improvement in our calibration protocols, we examined
our proliferation model more closely. Our protocol was based upon an earlier
version of the proliferation “sub-model”, where the cells do not divide until
spending τP time in the cell cycle (Macklin et al., 2009a); in our current model,
cells divide after τP − τG1 and continue cycling and growing for τG1 time.
For a given set of αA and αP parameters, this should increase the simulated
proliferative index. To test this, we first modify our system of ODEs to include
PSG2M (cycling cells in S, G2, and M phases), PG1

(cycling cells in G1 phase),
A (apoptotic cells), and Q (quiescent cells in G0):
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All measurements given as mean ± standard deviation

Quantity Patient Data
Simulated:
τG1 = 9 hr

Simulated:
τG1 = 1 min

PI (%) 17.43 ± 9.25 24.04 ± 4.587 18.25 ± 4.25

AI (%) 0.831 ± 0.572 0.7378 ± 0.7146 1.204 ± 0.1102

Viable rim
thickness (µm)

76.92 ± 12.51 80.73 ± 1.10 80.57 ± 1.68

Cell density
(cells/µm2)

0.003213 ± 5.95e-4 0.002950 ± 6.09e-5 0.002923 ± 7.67e-05

Table 4
Verification of the patient-specific calibration (expanded): Comparison of
the patient (second column) and computed (third and fourth columns) mean and
standard deviation for the proliferative index, apoptotic index, viable rim thickness,
and cell densities. The fourth column demonstrates that future calibration proto-
cols should incorporate the impact of τG1 using a more sophisticated population
dynamic analysis. All computed quantities are within the range of patient variation.

ṖSG2M = 〈αP〉Q−
1

τP − τG1

PSG2M (36)

ṖG1
=

2

τP − τG1

PSG2M −
1

τG1

PG1
(37)

Ȧ=αAQ−
1

τA
A (38)

Q̇=
1

τG1
PG1

− (〈αP〉+ αA)Q (39)

If P = PSG2M + PG1
and N = P + A+Q, then

PI =
P

N
, and AI =

A

N
. (40)

If we solve the system for 0 ≤ t ≤ 720 hours with Q(0) = 1 and A(0), P (0) = 0
with the parameter values in the main text, then we should be able to predict
the simulation’s mean AI and PI. By this calculation, the simulated PI and AI
should approach 24.45% and 0.761%, respectively; both of these limits match
our simulated mean PI (24.04%) and AI (0.738%) very well.

Conversely, setting τG1 = 1 min minimises the impact of the G1 phase, and
the simulated PI matches the calibration target very closely; see Table 4.
Because we can fully account for the discrepancy between the patient and
simulated data with our improved understanding of the model, we can safely
conclude that the calibration is performing well, and should match patient
data exceedingly well once taking into account the division of the cell cycle
into volume growth (G1) and non-growth (S-G2-M) phases. This provides new
potential for matching bimodal distributions of cell sizes and cell cycle states
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often observed in vitro (e.g., Tzur et al. (2009)). We plan improvements to
our calibration based upon these observations in ongoing work.

9.2 Testing biological hypotheses: heterogeneity in PI is not solely due to

oxygenation gradients; apoptosis is a “background” process

Because our calibration protocol only prescribed the mean behaviour, we can
use the simulated variation to test the model’s underlying biological hypothe-
ses. First, we note that the simulated variation in PI is significantly smaller
than the actual variation; this suggests that our current model (which varies
proliferation solely with the local level of oxygenation) does not fully charac-
terise the signalling mechanisms responsible for heterogeneity in DCIS pro-
liferation. This is therefore additional confirmation of our hypothesis that
while oxygenation dominates the variation in proliferation, other signalling
mechanisms (e.g., contact inhibition by E-cadherin/β-catenin pathways) play
a significant role in controlling DCIS proliferation as well.

Continuing, we assumed that apoptosis occurs at a low “background” rate that
is independent of oxygenation and any other signalling, and hence occurs with
probability that is independent of position within the viable duct. We see that
our standard deviation in AI is quite similar to the actual standard deviation in
the patient AI, which supports this biological hypothesis. In fact, the patient’s
mean and standard deviation are of comparable magnitude, which is consistent
with an exponentially-distributed random variable, just as in our model.

9.3 Robustness of the mechanics parameters

In Section 6.6, we estimated the cell-cell repulsion parameter cccr/ν to be on
the order of 10 µm/min. To assess the sensitivity of the model to error in
this estimate, we varied cccr/ν ∈ {1, 2, 5, 10, 20, 100} µm/min and simulated
30 days of growth with all other parameters as in the baseline case in the
main text. In particular, we kept ccca/cccr constant for all the simulations to
maintain the target cell density as in the calibration protocol, and we set
ccbr = cccr, and ccba = 10ccca. Changing cccr while maintaining these ratios of
forces is equivalent to altering the biomechanics time scale.

For each combination of mechanics parameters, we calculated the smoothed
tumour front velocity x′

V(t) at one-hour intervals from 10 to 25 days. (xV ex-
ceeds 1 mm at 30 days for cccr/ν = 100 µm/min.) For any t, we calculated the
smoothed x′

V(t) based upon the least-squares linear fit to xV on t± 24 hours.
In Fig. 9: left, we plot 〈x′

V〉 versus cccr/ν; the bars denote one standard devia-
tion above or below the mean. For 5 ≤ cccr/ν ≤ 50 µm/min, the tumour front
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Fig. 9. Robustness of the mechanics parameters: We varied the cell-cell repul-
sive force cccr/ν while maintaining the relative balance of the forces; this is equivalent
to varying the biomechanics time scale. For cccr/ν within an order of magnitude of
our initial estimate, both the tumour front velocity (left plot) and viable rim cell
thickness (right plot) varied little from our baseline simulation. Bars represent one
standard deviation from the computed mean for each parameter value.

velocity was comparable, indicating that our simulations are robust so long
as we can estimate the mechanics parameters within an order of magnitude.
This is advantageous, as the individual cell mechanics parameters are among
the most difficult to measure accurately.

To further evaluate the model’s robustness, we calculated the mean cell density
ρ throughout the viable rim at one-hour increments from 10 to 25 days for
each of these simulations. In Fig. 9: right, we plot 〈ρ〉 versus cccr/ν; the bars
denote one standard deviation above or below the mean. Similarly to 〈x′

V〉,
the mean cell density was comparable for 5 ≤ cccr/ν ≤ 100 µm/min. This
again indicates that our simulations are robust so long as we can estimate the
mechanics parameters within an order of magnitude. Note that if cccr/ν ≤ 1
µm/min, then the cell density increases rapidly. This is consistent with our
earlier results that the cell-cell repulsion parameter must be on the order of
10 to prevent overlapping cells.

9.4 On the balance of cell-cell and cell-BM adhesion

We studied the impact of the balance of cell-cell and cell-BM adhesive forces
by varying ccca

ccba
∈ {0.01, 0.1, 1, 10}, while maintaining ccca

cccr
constant. As this

ratio is increased to 1 and above, the cells begin to pull off the BM except
in regions of dense cell packing. See Fig. 10: left for a typical example (at 15
days) with ccca

ccba
= 1. In 3D, the curvature of the duct may reduce this effect.

On the other hand, for ccca
ccba

= 0.01, it was very difficult for daughter cells to
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Fig. 10. Impact of the ratio of cell-cell and cell-BM adhesive forces ccca/ccba:
Left: For ccca/ccba = 1 and greater, cells easily pull away from the duct wall except
in regions of densely packed duct. Right: For ccca/ccba = 0.01, cells get trapped
near the BM, leading to a “wetting” effect that accelerates the tumour’s advance
through the duct. High oxygenation near the duct wall acts as nonlinear feedback
to accelerate the process. Cells are coloured as in the main text. Bar: 100 µm. A
colour version of this figure is available in the online edition.

push away from the BM after proliferation, leading to a “wetting” effect along
the duct wall similar to a fluid capillary force. See Fig. 10: right (plotted at
15 days). This increased the percentage of cells near the high-oxygen regions
of the duct, which acted as a feedback that accelerates the tumour’s advance
through the duct at unrealistic rates. See Video S2. Because the cell-BM adhe-
sive force is modelled as normal to the BM (thereby neglecting any tangential
component), the BM is effectively frictionless, further exacerbating this effect.

9.5 Amount of necrotic cell swelling primarily influences the gap

We varied the level of necrotic cell swelling fNS ∈ {0%, 30%, 100%} and found
virtually no impact on the least-squares fit of the rate of tumour advance
from 15 to 30 days. (24.78, 24.38, and 24.25 µm/day, respectively.) Instead,
the primary impact was to increase the size of the physical gap, with increases

scaling roughly as (1 + fNS)
1
3 (result not shown).

9.6 Heterogeneous oxygen uptake causes perinecrotic boundary instability

In Section 6.5, we estimated that proliferating and non-proliferating tumour
cells uptake oxygen at approximately the same rate, with λp = λnp. We close

with an investigation of λp

λnp
∈ {1, 10, 100}. In each simulation, we maintained

〈λ〉 = PIλp + (1 − PI)λnp constant. The results at time 30 days are plotted

in Fig. 11. As λp

λnp
is increased, the stability of the perinecrotic boundary is

reduced, with greater mixing of necrotic cellular debris and viable tumour
cells. This occurs because high oxygen uptake by isolated proliferating cells
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Fig. 11. Impact of heterogeneous oxygen uptake rates: As the ratio λp/λnp
of the oxygen uptake rates by the proliferating (λp) and nonproliferating cells (λnp)
is increased from 1 (top) to 10 (middle) and 100 (bottom), the stability of the
perinecrotic boundary is reduced, with greater mixing of necrotic cellular debris and
viable cells. These morphologies are not typical in DCIS, supporting the estimate
that λp ≈ λnp. Cells are coloured as in the main text. Bar: 100 µm. A colour version
of this figure is available in the online edition.

creates small pockets of hypoxia between these cells and the necrotic core. See
Video S3. The result is a ragged perinecrotic boundary not typically observed
in DCIS, further supporting the estimate that λp ≈ λnp.

However, it is interesting to observe that such an instability can result from
microscopic variations in cell metabolism caused by cell-induced, fine-scale
alterations in the tumour microenvironment; such instabilities are often at-
tributed to variations in cellular adhesion. While the result here is likely non-
physical for oxygen transport, similar behaviour could occur in glucose trans-
port, where glucose uptake is much greater for hypoxic cells than non-hypoxic
cells (Smallbone et al., 2007b,a; Gatenby et al., 2007).
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Fig. 12. The tumour advances exponentially (red and blue curves) until the viable
rim is well-established and cell lysis has begun. Thereafter, the tumour advances
through the duct at a constant rate (magenta curves).

9.7 Necrotic cell lysis is critical to linearity of tumour advance

In the main text, we found that necrotic cell lysis acts as a mechanical stress
relief, and leads to a constant rate of tumour advance through the duct.
To better understand this effect, we varied the necrotic cell lysis time scale
τNL ∈ {2, 6 hours, 1, 5, 15 days}, with all other parameters as in the baseline
simulation. To characterise the impact, we first examine the time evolution of
the maximum tumour cell extent xV for τNL = 15 days. See Fig. 12: left.

For the first 6 days, there is no necrosis, and the tumour grows exponentially;
see the plot of xV (black and white curve) versus the red fitted exponential
curve on [0,6] in Fig. 12: left. (All exponential fits are linear least squares
fits to log10 xV.) At 6.08 days, the first cells necrose, and the viable region
undergoes a topological change, splitting into upper and lower viable rims; in
3D, this would correspond to a hollow tube. Once this topological change is
well-established (by approximately 10 days), growth continues exponentially
at a lower rate; see the blue fitted exponential curve on [10,21] in Fig. 12: left.
At 21.04 days (15 days after the first instance of necrosis), the necrotic cells
begin to lyse, and the tumour’s growth becomes linear as discussed earlier; see
the magenta fitted line in Fig. 12: left on [21, 22.08]. At 22.08 days, the cells
reach the edge of the computational domain at 1 mm.

The dynamic is the same for τNL = 5 days: growth is exponential at a high rate
until the first instance of necrosis around 6 day; see the red fitted exponential
curve on [0,6] in Fig.12: right. From 6 days to approximately 10 days, the
tumour viable region is undergoing a topological change to a hollow tube;
this can be observed by its transitional behaviour from 6 to approximately 10
days. The first necrotic cells begin to lyse at 11 days, and the tumour growth
is linear until cells leave the simulation domain (1 mm) around 27 days; see
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Fig. 13. For sufficiently small necrotic cell lysis times (τNL), the tumour’s linear
advance is roughly identical, with linear growth after the onset of necrotic cell
lysis (around 5 to 6 days) that becomes clearer once the viable rim topology is
well-established (around 10 days).

the magenta fitted line in Fig. 12: right. Note that while growth is linear from
11 to 15 days, it appears to be at a faster rate, due to the dominance of the
unlysed necrotic cells for these earlier times.

For lysis times under 1 day, growth is exponential for approximately the first
5 to 6 days, followed by a transitional period from approximately 6 to 10 days
while the viable rim undergoes its topological change. Linear growth follows
from 10 days until the end of the simulation at 30 days. This is the expected
dynamic, given that necrotic cells begin lysing well before the end of the viable
rim topological change. See Fig. 13. Note that all three tumours advance at
approximately the same rate.

10 Simulation Animations

To better illustrate the key results, we include the following animations below.
In each animation, the cells are labelled as follows:

• Dark blue circles: cell nuclei
• Green cells: proliferating cells (S = P; cells in non-G0 phase)
• Pale blue cells: quiescent cells (S = Q; cells in G0 phase)
• Red cells: apoptotic cells (S = A)
• grey cells: necrotic cells prior to lysis (S = N )
• Red circles: necrotic cellular debris after lysis (S = N ); shade of red indi-
cates the degree of calcification

• Bright red circles: clinically-detectable calcified cellular debris (S = C)
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The movies are in AVI format and compressed with the Xvid codec. The
open source VLC media player can play these movies on multiple platforms,
including Windows, OSX, and Linux. Alternate formats are indicated below.

(1) Video S1: the “baseline” simulation from the main text, plotted in 1.5
mm of duct from 0 to 45 days.
Alternate format: http://www.youtube.com/watch?v=b GVnZWVhgk.

(2) Video S2: “wetting” behaviour when cell-BM adhesion is strong relative
to cell-cell adhesion (ccba = 100ccca; see Section 9.4), plotted from 0 to 30
days in 1 mm of duct.
Alternate format: http://www.youtube.com/watch?v=9q9LGzX9fok.

(3) Video S3: unstable perinecrotic boundary (between the viable rim and
the necrotic core) resulting from heterogeneous cellular oxygen uptake
rates (λp = 100λnp; see Section 9.6), plotted from 0 to 30 days in 1 mm
of duct.
Alternate format: http://www.youtube.com/watch?v=Brgw8qI8k-k.

References

T. L. Adamovich and R. M. Simmons. Ductal carcinoma in situ with microin-
vasion. Am. J. Surg., 186(2):112–6, 2003.

L. Ai, W.-J. Kim, T.-Y. Kim, C. R. Fields, N. A. Massoll, K. D. Robertson,
and K. D. Brown. Epigenetic silencing of the tumor suppressor cystatin m
occurs during breast cancer progression. Canc. Res., 66(16):7899–909, 2006.

A. R. A. Anderson. A hybrid mathematical model of solid tumour invasion:
The importance of cell adhesion. Math. Med. Biol., 22(2):163–86, 2005.

A. R. A. Anderson and V. Quaranta. Integrative mathematical oncology. Nat.
Rev. Canc., 8(3):227–44, 2008.

E. Anderson. Cellular homeostasis and the breast. Maturitas, 48(S1):13–7,
2004.

L. F. Barros, T. Hermosilla, and J. Castro. Necrotic volume increase and
the early physiology of necrosis. Comp. Biochem. Physiol. A. Mol. Integr.

Physiol., 130(3):401–9, 2001.
L. F. Barros, T. Kanaseki, R. Sabriov, S. Morishima, J. Castro, C. X. Bit-
tner, E. Maeno, Y. Ando-Akatsuka, and Y. Okada. Apoptotic and necrotic
blebs in epithelial cells display similar neck diameters but different kinase
dependency. Cell Death Diff., 10(6):687–97, 2003.

F. O. Baxter, K. Neoh, and M. C. Tevendale. The beginning of the end: Death

43



signaling in early involution. J. Mamm. Gland Biol. Neoplas., 12(1):3–13,
2007.

F. V. Berghen. xmlParser project website, 2009. URL
http://www.applied-mathematics.net/tools/xmlParser.html.

P. Bursac, G. Lenormand, B. Fabry, M. Oliver, D. A. Weitz, V. Viasnoff, J. P.
Butler, and J. J. Fredberg. Cytoskeletal remodelling and slow dynamics in
the living cell. Nat. Mat., 4(7):557–61, 2005.

L. M. Butler, S. Khan, G. E. Rainger, and G. B. Nash. Effects of endothelial
basement membrane on neutrophil adhesion and migration. Cell. Immun.,
251(1):56–61, 2008.

S. W. Byers, C. L. Sommers, B. Hoxter, A. M. Mercurio, and A. Tozeren. Role
of E-cadherin in the response of tumor cell aggregates to lymphatic, venous
and arterial flow: measurement of cell-cell adhesion strength. J. Cell Sci.,
108(5):2053–64, 1995.

H. M. Byrne and D. Drasdo. Individual-based and continuum models of grow-
ing cell populations: A comparison. J. Math. Biol., 58(4–5):657–87, 2009.

O. Cantoni, A. Guidarelli, L. Palomba, and M. Fiorani. U937 cell necrosis
mediated by peroxynitrite is not caused by depletion of ATP and is pre-
vented by arachidonate via an atp-dependent mechanism. Mol. Pharm., 67
(5):1399–1405, 2005.

S. Ciatto, S. Bianchi, and V. Vezzosi. Mammographic appearance of calci-
fications as a predictor of intraductal carcinoma histologic subtype. Eur.

Radiology, 4(1):23–6, 1994.
J. Clark. Expat XML parser project website, 2007. URL
http://expat.sourceforge.net/.

M. Conacci-Sorrell, J. Zhurinsky, and A. Ben-Zeév. The cadherin-catenin
adhesion system in signaling and cancer. J. Clin. Invest., 109(8):987–91,
2002.

V. Cristini and J. Lowengrub. Multiscale modeling of cancer. Cambridge
University Press, Cambridge, UK, 2010. ISBN 978-0521884426.

V. Cristini, J. S. Lowengrub, and Q. Nie. Nonlinear simulation of tumor
growth. J. Math. Biol., 46(3):191–224, 2003.

J. C. Dallon and H. G. Othmer. How cellular movement determines the collec-
tive force generated by the dictyostelium discoideum slug. J. Theor. Biol.,
231(2):203–22, 2004.

C. G. Danes, S. L. Wyszomierski, J. Lu, C. L. Neal, W. Yang, and D. Yu. 14-
3-3ζ down-regulates p53 in mammary epithelial cells and confers luminal
filling. Canc. Res., 68(6):1760–7, 2008.

M. Dao, C. T. Lim, and S. Suresch. Mechanics of the human red blood cell
deformed by optical tweezers. J. Mech. Phys. Solids, 51(11–12):2259–80,
2003.

T. S. Deisboeck, L. Zhang, J. Yoon, and J. Costa. In silico cancer modeling:
is it ready for prime time? Nat. Clin. Practice Oncol., 6(1):34–42, 2009.

T. S. Deisboeck, Z. Wang, P. Macklin, and V. Cristini. Multiscale cancer
modeling. Annu. Rev. Biomed. Eng., 13, 2011. (in press).

44



P. J. DiGregorio, J. A. Ubersax, and P. H. O’Farrell. Hypoxia and nitric oxide
induce a rapid, reversible cell cycle arrest of the drosophila syncytial divi-
sions. J. Biol. Chem., 276(3):1930–7, 2001. doi: 10.1074/jbc.M003911200.

S. Dormann and A. Deutsch. Modeling of self-organized avascular tumor
growth with a hybrid cellular automaton. In Silico Biology, 2(3):393–406,
2002.

D. Drasdo. Coarse graining in simulated cell populations. Adv. Complex Sys.,
8(2 & 3):319–63, 2005.
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