
Patient-calibrated agent-based modelling of

ductal carcinoma in situ (DCIS) I: Model

formulation and analysis

Paul Macklin 1,2,3, Mary E. Edgerton 4, Alastair Thompson 4,5,

Vittorio Cristini 3,6

Abstract

Ductal carcinoma in situ (DCIS)–an important precursor to invasive breast cancer–
is typically diagnosed as microcalcifications in mammograms. However, the effective
use of mammograms and other patient data to plan treatment has been restricted
by our limited understanding of DCIS growth and calcification.

We develop a mechanistic, agent-based model of DCIS that is broadly applicable be-
yond breast cancer. The motion of each cell is determined by a balance of adhesive,
repulsive, and motile forces. Interaction forces are governed by potential functions
that can model heterophilic and homophilic adhesion, interaction between cells of
unequal size and phenotype, and interaction with a basement membrane. Each cell
has a phenotypic state that is governed by exponentially-distributed random vari-
ables. This is a natural generalisation of prevalent models, and provides a rigorous
way to vary transition probabilities with variable time step sizes and the microenvi-
ronment. Each agent has a detailed “submodel” of the cell volume changes during
proliferation and necrosis (including the first model for the fast time scale processes
of swelling and lysis), and we are the first to account for cell calcification. We simu-
late the microenvironment through coupled reaction-diffusion equations. The result
is a modelling framework that is well-suited to investigating the biophysical mecha-
nisms of DCIS growth and calcification. An analysis of the model’s volume-averaged
behaviour yields new insight on the relationship between intraductal oxygen levels,
proliferation, and heterogeneous cell signalling; we test these ideas against patient
immunohistochemistry data.

This paper is the first in a two-part series on DCIS modelling. In Part II, we use
our analysis to develop a patient-specific model calibration protocol, simulate DCIS
in a virtual patient, generate macroscopic predictions on DCIS microstructure and
clinical progression, and test these against large, independent sets of clinical data.
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1 Introduction

Ductal carcinoma in situ (DCIS), a type of breast cancer where growth is
confined within the breast ductal/lobular units, is the most prevalent precur-
sor to invasive ductal breast cancer (IC). Breast cancer is the second-leading
cause of death in women in the United States. The American Cancer Soci-
ety predicted that 50,000 new cases of DCIS alone (excluding other forms
of pre-invasive change such as lobular carcinoma in situ) and 180,000 new
cases of IC would be diagnosed in 2007 (Jemal et al., 2007; American Can-
cer Society, 2007). Co-existing DCIS is expected in 80% of IC, or 144,000
cases (Lampejo et al., 1994). While DCIS itself is not life-threatening, it is a
very important precursor to IC because (1) it can be treated and (2) if left
untreated, it has a high probability of progression to IC, which is a deadly dis-
ease (Page et al., 1982; Kerlikowske et al., 2003; Sanders et al., 2005). While
the detection and treatment of DCIS have greatly improved over the last few
decades, problems persist. DCIS can be difficult to detect by mammography,
the principle modality in breast screening, or to distinguish from other aber-
rant lesions (Venkatesan et al., 2009). This can lead to “false positives” of
DCIS and overtreatment, including unnecessary surgery. On the other hand,
even in cases where DCIS excision is truly warranted, multiple procedures
may be required to fully eliminate all DCIS, due to the differences between
the pre-operative estimated and actual resected histopathology findings (e.g.,
of the tumour size and shape) (Cheng et al., 1997; Silverstein, 1997; Cabioglu
et al., 2007; Dillon et al., 2007). Hence, a solid scientific understanding of
DCIS progression is required to improve clinical decision making.

There are many open questions on DCIS biology which contribute to the cur-
rent uncertainty in clinical practice. How does DCIS progress from a few pro-
liferating cells to detectable lesions potentially including microcalcifications?
How do heterogeneities in cell mechanics and other phenotypic characteris-
tics give rise to specific DCIS morphologies? Is the gap that is often observed
between the tumour’s viable rim and the necrotic core simply an artifact of his-
tologic preparation, or is it indicative of further biomechanical processes? Can
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observations from immunohistochemistry (IHC) and histopathology images be
used to estimate important physiological constants? Conversely, can mathe-
matical modelling provide new insight on interpretting these data? What is the
relationship between the microcalcifications observed in mammography and
tumour morphology? How can we calibrate patient-specific models to limited
and often noisy histopathologic data, often from only a single time point?

These clinically-pertinent scientific questions motivate our model develop-
ment. Mathematical modelling has already seen use in understanding and
predicting the growth of DCIS or its approach towards a steady state. Franks
et al. (2003a,b, 2005) and Owen et al. (2004) have used continuum models
to investigate tumour growth in breast ducts, including the impact of vol-
ume loss in the necrotic core, ductal expansion, and the influence of basement
membrane (BM) adhesion (Franks et al., 2003a,b, 2005; Owen et al., 2004);
this work can be traced to a long history of work by Ward and King (e.g.,
Ward and King (1997)) that includes model parameterisation by matching to
experiments. Rejniak and co-workers applied an immersed boundary method
to individual polarised cells; their model was able to reproduce several com-
plex DCIS sub-types (Rejniak, 2007; Rejniak and Dillon, 2007; Rejniak and
Anderson, 2008a,b). More recently, Norton et al. (2010) conducted a similar
investigation of the relationship between polarised cell adhesion, intraductal
pressure, and DCIS morphology in 2D using a lattice-free agent model and
were able to produce nontrivial tumour microstructures (e.g., cribriform pat-
terns). Gatenby et al. (2007), Silva et al. (2010), and Smallbone et al. (2007)
have investigated the role of hypoxia, glycolysis, and acidosis in DCIS evolu-
tion in 2D and 3D using cellular automata (CA) methods by including detailed
metabolic sub-models. Bankhead III et al. (2007) conducted early 3-D simula-
tions of tumour cell heirarchy using CA techniques. Sontag and Axelrod (2005)
combined population-scale models with machine learning techniques and sta-
tistical analyses to postulate new hypotheses on DCIS mutation pathways
from benign precursors, while Enderling et al. (2006, 2007) studied DNA mu-
tation within DCIS and recurrence (particularly following radiation therapy)
using continuum and CA methods. Mannes et al. (2002) used CA methods to
investigate Pagetoid spread.

All this work has provided a degree of insight into DCIS, but has not fully
answered the questions we posed. Typical CA methods cannot accurately
model cell mechanics, particularly proliferation by tumour cells when fully sur-
rounded by other cells. Such proliferation, which is regularly observed in DCIS
immunohistochemistry, can only be approximated in CA methods by intro-
ducing complex, often phenomenological rules to push multiple cells through
the simulated domain. Population-based ordinary differential equation (ODE)
models do not account for spatial heterogeneity and hence cannot investigate
the impact of heterogeneous mechanics, substrate transport, and their inter-
action. To date, none have modelled the process of microcalcification, and
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existing “sub-models” of necrosis have been simple volume loss terms, and
have not considered the individual effects of cell swelling and lysis. Indeed,
many prevalent models do not include necrosis. The work by Norton et al.
(2010) shows promise, but it has yet to predict tumour biophysics as emer-
gent phenomena because it imposed many of its mechanical, proliferation,
viable rim size, and apoptosis properties a priori as algorithmic rules. The de-
tailed morphological model of Rejniak and colleagues has produced impressive
results, but faces computational limits when applied to large numbers of cells.
Continuum models can overcome these limits, but calibration to molecular-
and cell-scale data is not straightforward, particularly for phenomenological
“lumped” parameters (Macklin et al., 2010b). We are currently approaching
this issue as a multiscale information flow, by upscaling calibrated cell-scale
models to the continuum scale (Edgerton et al., 2011). See also the discussion
in Cristini and Lowengrub (2010) and recent multiscale modelling reviews
(Deisboeck et al., 2010; Lowengrub et al., 2010). To our knowledge, there has
been no prior patient-specific calibration to the proliferative and apoptotic
indices generally measured in breast biopsies at any scale of modelling.

We presently develop a lattice-free, agent-based cell model that can be ap-
plied to many problems, exemplified by DCIS. The cells (agents) are modelled
as objects subject to a balance of adhesive, repulsive, and motile forces that
determine their motion. Cell-cell and cell-basement membrane interaction me-
chanics are modelled using potential functions that can account for finite in-
teraction distances, both heterophilic and homophilic adhesion, uncertainty in
cell morphology and position, and interaction between cells of variable sizes
and types. We introduce a level set formulation of the basement membrane
morphology that is well-suited to future deformation modelling, and provides
a generalised framework for the exchange of forces between discrete cell objects
and extended macroscopic objects with nontrivial geometries.

Each cell is endowed with a phenotypic state, and phenotypic transitions are
governed by exponentially-distributed random variables that depend upon the
cell’s internal state and the local microenvironment. This modelling choice is
consistent with experimental biology dating back as far as the 1970s (e.g,
Smith and Martin (1973)), is a natural extension of prevalent phenotypic
transition models in widespread use today, provides a rigorous method to
vary the model’s probabilities with the microenvironment and with variable
time step sizes (e.g, those arising from numerical stability criteria), and lends
itself to mathematical analysis.

Our choice of functional relationship between the quiescent-to-proliferative
phenotypic transition rate and oxygen availability yields predictions that we
test quantitatively against actual breast patient data. We include detailed
“sub-models” of cell volume change during proliferation and necrosis (includ-
ing the effects of swelling and lysis), which are able to predict subtle mi-
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crostructures in the viable rim-necrotic core boundary for the first time, as
well as the important impact of mechanical relaxation by lysing cells in the
necrotic core. Our model is the first to investigate the development of cellular
calcifications towards a clinically-detectable state. We couple the agents to the
microenvironment in a composite modelling framework by solving continuum
reaction-diffusion equations for substrates that are altered by the cells. To
make the model predictive, we constrain all major model parameters by sur-
veying a broad swath of the experimental and theoretical biology literature
through a “mathematical lens.” Lastly, we provide the first patient-specific
model calibration protocol that can estimate the remaining population dy-
namic and mechanical parameters based upon immunohistochemistry for pro-
liferation (Ki-67, given as proliferative index), apoptosis (cleaved Caspase-
3, given as apoptotic index), and various morphological measurements from
hematoxylin and eosin (H&E) histopathology images at a single time point,
allowing us to avoid the inherently inaccurate problem of estimating time
derivatives from noisy patient data derived from a single sampling.

The organisation of this paper is as follows: In Section 1.1, we discuss the
specific biology of normal breast epithelium and DCIS. After discussing rele-
vant prior agent-based modelling (with a focus on DCIS) in Section 1.2, we
introduce a composite agent-based cell model in Section 2 that builds upon
and extends this reviewed work. In Section 3, we analyse the volume-averaged
behaviour of the model in non-hypoxic regions. We close Part I by apply-
ing our volume-averaged analysis to individual breast ducts to formulate and
test quantitative hypotheses on the relationships between oxygen, prolifera-
tion, and cell signalling heterogeneity in actual immunohistochemistry data
(Section 4). We detail our interaction potential functions in Appendix A.

In Part II (Macklin et al., 2011), we apply our model to DCIS, introduce
and test a patient-specific model calibration protocol based upon immunohis-
tochemistry and histopathology, describe our numerical algorithms, simulate
and analyse long-time DCIS growth in an individual, anonymised patient, and
generate predictions on the rate of DCIS growth, the microstructure of the vi-
able rim and necrotic core, and the relationship between the size of a tumour
on a mammogram at the time of diagnosis (measured as a microcalcification)
and its true morphological size, as measured by a pathologist post-operatively.
These results are all tested against patient pathology and clinical data.

1.1 Ductal carcinoma in situ (DCIS) of the breast

Patient-specific DCIS simulation both motivates our model development and
serves as a test bed for the resulting framework. We now discuss the specific
biology of normal breast tissue and how that biology is subverted in DCIS.
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For further pertinent biological background (including support for some mod-
elling assumptions), see Macklin (2010) and the references therein. The biology
discussed below is generally applicable to most epithelial malignancies.

1.1.1 Biology of breast duct epithelium

The breast is organised as a system of 12-15 independent, largely parallel
duct systems: clusters of milk-producing lobules that feed into a branched
duct system that terminates at the nipple (Wellings et al., 1975; Moffat and
Going, 1996; Ohtake et al., 2001; Going and Mohun, 2006). The duct systems
are separated by supporting ligaments and fatty tissue and drained by the
lymphatic system (Tannis et al., 2001). Each duct is a tubular arrangement
of epithelial cells that enclose a fluid-filled lumen. The epithelium, in turn, is
surrounded by myoepithelial cells (epithelial cells with contractile properties
to transport milk) and a basement membrane. Surrounding the duct is the
stroma, which is comprised primarily of a supporting scaffolding of fibres (the
extracellular matrix, or ECM) and mesenchymal cells that maintain the ECM.
The stroma is interlaced by blood vessels that supply oxygen and other vital
substrates to the tissue. See Fig. 1 (top left). Note that the breast epithelium
has no direct access to oxygen and nutrients; these must diffuse into the duct
through the BM.

Fig. 1. Top Left: Typical breast duct microanatomy. Top Right: Breast duct epithe-
lial cell polarisation. Bottom: Major DCIS types and invasive ductal carcinoma.

The epithelial cells are polarised : integrins on a well-defined basal side adhere
to the basement membrane, E-cadherin molecules on the lateral sides adhere to
neighbouring cells, and the apical side has relatively few adhesion molecules.
See Fig. 1 (top right). The epithelial cell arrangement in the duct depends
critically upon this polarisation and the resulting nonuniform distribution of
adhesive forces (Jiang and Chuong, 1992; Hansen and Bissell, 2000; Wei et al.,
2007; Butler et al., 2008).

6



While the epithelial cell population oscillates with the menstrual cycle (Khan
et al., 1998, 1999), on average proliferation and apoptosis balance to maintain
homeostasis. Microenvironmental changes can trigger signalling responses that
lead to proliferation or apoptosis, which ordinarily helps to safeguard the
normal tissue architecture. For example, a decrease of E-cadherin signalling
(following apoptosis in a neighbouring cell) can increase β-catenin signalling,
which eventually increases proliferation to replace the missing cell (Conacci-
Sorrell et al., 2002; Hansen and Bissell, 2000; Wei et al., 2007). Adhesion
to the BM triggers integrin signalling and downstream production of survival
proteins that inhibit apoptosis (Ilić et al., 1998; Giancotti and Ruoslahti, 1999;
Stupack and Cheresh, 2002). Loss of attachment to the BM therefore allows
one type of apoptosis (anoikis) to occur, thus preventing overgrowth of cells
into the lumen (Danes et al., 2008). Hormones such as estrogen, progesterone,
prolactin, and epidermal growth factor can affect epithelial cell proliferation
and apoptosis prior to lactation (Anderson, 2004), during breast involution
(Baxter et al., 2007), and in cancer (Simpson et al., 2005).

1.1.2 Biology of DCIS

Overexpressed oncogenes and underexpressed tumour suppressor genes can
disrupt the balance of epithelial cell proliferation and apoptosis, leading to
overproliferation. This can occur typically either by the accumulation of DNA
mutations (genetic damage) or DNA amplification (Simpson et al., 2005), or
epigenetic anomalies (Ai et al., 2006). The transformation from regular breast
epithelium to carcinoma is thought to occur in stages. For simplicity, we set
aside the relatively benign precursor transformations (e.g., atypical ductal
hyperplasia) which have a low risk for subsequent invasive breast cancer (Page,
1992) and focus on DCIS.

In the most well-differentiated classes of DCIS, the epithelial cells maintain
their polarity and anisotropic adhesion receptor distributions, resulting in par-
tial recapitulation of the non-pathological duct structure within the lumen.
These demonstrate either finger-like growths into the lumen (micropapillary:
see Fig. 1 (bottom:a)), or arrangements of duct-like structures (cribriform:
see Fig. 1 (bottom:b)) (Silverstein, 2000). The cells in solid type DCIS lack
polarity and do not develop these microstructures. Instead, the cells prolifer-
ate until filling the entire lumen (Fig. 1 (bottom:c)) (Danes et al., 2008). The
proliferating cells uptake oxygen and nutrients as they diffuse into the duct,
causing substrate gradients to form. If the central oxygen level is sufficiently
depleted, a necrotic core of debris forms (comedo-type solid DCIS: see Fig. 1
(bottom:c)) (Silverstein, 2000). These necrotic cells are typically not phagocy-
tosed; instead, they swell and burst (Barros et al., 2001), and their solid (i.e.,
non-water) components are slowly calcified (Stomper and Margolin, 1994). It
is these calcifications that are generally detected by mammograms when di-
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agnosing DCIS (Ciatto et al., 1994). The BM blocks DCIS from invading the
stroma, thereby impeding spread through the stroma, invasion into lymphovas-
cular channels and hence metastasis. Further mutations can transform DCIS
into invasive ductal carcinoma, whose cells move along the duct, secrete matrix
metalloproteinases (MMPs) to degrade the BM and subsequently invade the
stroma (Fig. 1 (bottom:d)). See Silver and Tavassoli (1998) and Adamovich
and Simmons (2003).

While it is tempting to regard DCIS as a linear progression from regular ep-
ithelium to cribriform or micropapillary (“partially transformed”) to solid type
(“fully transformed”), the morphological and molecular pathway is currently
an open question (Erbas et al., 2006; Rennstam and Hedenfalk, 2006). The
excellent modelling and analysis by Sontag and Axelrod (2005) strongly re-
futes a linear progression model. The dominant type of DCIS in any particular
case may depend upon the underlying molecular changes. For example, crib-
riform DCIS could arise from hyperproliferative cells where genes regulating
polarisation are functionally intact.

1.2 A sampling of prior agent-based cell modelling

It is beyond the scope of this paper to review all discrete biomathematics
modelling; instead, we briefly review relevant prior agent-based models. For a
broader and deeper review of discrete modelling, please see Lowengrub et al.
(2010) and Macklin et al. (2010b) and the references therein.

While cellular automata methods are efficient for linking molecular- and cell-
ular-scale biology in large numbers of virtual cells, they cannot accurately
model cell and tissue mechanics due to the limitations they place upon cell
arrangement (must be grid-aligned), size (all cells have equal size), velocity
(cells move one cell diameter per time step), and interactions (can only inter-
act with up to 8 neighbours in 2D). In particular, proliferation is disallowed in
cells that are surrounded by cells in the adjacent computational mesh points;
in actual tissue, interior cells can proliferate by deforming and pushing neigh-
bouring cells into non-lattice configurations. In this paper, we use agent-based
modelling (ABM), which eliminates the computational lattice and instead as-
signs each cell a position that evolves under the influence of forces acting
upon it. Note that ABMs are sometimes referred to as individual-based mod-
els or particle methods. Alternative approaches include the lattice-gas method
(Dormann and Deutsch, 2002), off-lattice cellular automata methods such as
Voronoi-Delaunay models (Schaller and Meyer-Hermann, 2005), the immersed
boundary cell model (Rejniak, 2007; Rejniak and Dillon, 2007; Rejniak and
Anderson, 2008a,b), and the cellular potts technique (a.k.a. Graner-Glazier-
Hogeweg model) (Graner and Glazier, 1992; Glazier and Garner, 1993).
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An excellent agent-based model was developed by Drasdo, Höhme and co-
workers (Drasdo et al., 1995; Drasdo and Höhme, 2003, 2005; Drasdo, 2005).
Cells are modelled as roughly spherical, slightly compressible, and capable of
migration, growth and division. Cell adhesion and repulsion (from limitations
on cell deformation and compressibility) are modelled by introducing an inter-
action energy; cells respond to proliferation and apoptosis in their neighbours
by moving to reduce the total interaction energy using a stochastic algorithm.
Ramis-Conde et al. (2008a,b) used a similar agent model, but instead used in-
teraction potential functions to simulate cell-cell mechanics: cells move down
the gradient of the potential, analogous to minimizing the interaction en-
ergy. Their work included a basic accounting for the cell-cell surface contact
area, and related the strength of cell-cell adhesion to the concentration of E-
cadherin/β-catenin complexes in the contact regions. Others have modelled
cells as deformable viscoelastic ellipsoids (e.g., Dallon and Othmer (2004)).

Drasdo et al. (1995) initially developed their agent model to study epithelial
cell-fibroblast-fibrocyte aggregations in connective tissue. More recently, they
applied it to avascular tumour growth (Drasdo and Höhme, 2003), with bio-
physical and kinetic parameters drawn from experimental literature (Drasdo
and Höhme, 2005). More recently, Byrne and Drasdo (2009) upscaled a dis-
crete model to calibrate a continuum tumour growth model, in part by us-
ing a cell velocity-based approximation of the proliferative pressure to cal-
ibrate the continuum-scale mechanics. Drasdo and co-workers were able to
mechanistically model biomechanical growth limitations and the epithelial-to-
mesenchymal transition in tumour cells, and they made testable hypotheses on
the links between tumour hypoglycemia and the size of the necrotic core. Galle
et al. (2005, 2009) extended the approach to include cell-BM adhesion, and
its impact on cell differentiation and tumour monolayer progression. Ramis-
Conde et al. (2008a,b) used their model to investigate the links between a
sophisticated subcellular model of E-cadherin/β-catenin signalling, intercellu-
lar signalling, and tissue morphology.

The very recent agent model of Norton et al. (2010) represented cell-cell ad-
hesion and repulsion using a linear damped spring model, incorporated both
apoptosis and necrosis, duct wall adhesion (through adhesion to myoepithelial
cells), asymmetric progenitor cell division, and a simplified model of intraduc-
tal fluid pressure. The model recapitulated solid-type, comedo-type, micropap-
illary, and cribriform DCIS, illustrating the great potential in an agent-based
modelling approach. However, the model lacked substrate transport, necro-
sis was modelled by imposing the viable rim thickness a priori rather than
through a combination of cell energetics and transport limitations, and pro-
liferating cells were randomly distributed across the viable rim with uniform
distribution; this contradicts immunohistochemical observations of the distri-
bution of proliferating DCIS cells within the duct (e.g., as in Fig. 7). The
authors did not treat necrotic core mechanics, which has a great impact on
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the overall tumour morphology and rate of tumour advance in the duct. (See
Part II (Macklin et al., 2011).) The observed microstructures were only partly
mechanistic because the model enforced polarised cell-cell adhesion and “mi-
crolumens” algorithmically; in a mechanistic model, the tumour microstruc-
ture should not be imposed, but rather emerge naturally from the model’s
biophysics and population dynamics.

2 Agent-Based Cell Model

We now fully elaborate a discrete, cell-scale modelling framework that we first
introduced in Macklin et al. (2009a, 2010b), which combines and extends some
of the major features described in the models reviewed in Section 1.2. Our ob-
jective is a model that is sufficiently mechanistic that cellular and multicellular
behaviour manifest themselves as emergent phenomena of the model, rather
than through computational rules that are imposed a priori. We employ a
modular design (in software and mathematics) that allows “sub-models” (e.g.,
molecular signalling, cell morphology) to be expanded, simplified, or outright
replaced as necessary. Where possible, we choose simple sub-models and test
the model framework’s success in recapitulating correct DCIS behaviour.

Cells are modelled as physical objects that exchange forces; essential molecular
biology is incorporated through carefully-chosen constitutive relations. We at-
tempt to model the mechanics, time duration, and biology of each phenotypic
state as accurately as our data will allow; this should facilitate calibration to
molecular- and cellular data. The agents interact with the micronenvironment
through coupled partial differential equations governing substrate transport.
We use the same model for both cancerous and non-cancerous cells. Function-
ally, the cells differ primarily in the values of their proliferation, apoptosis,
and other parameters; this is analogous to the downstream effects of altered
oncogenes and tumour suppressor genes (Hanahan and Weinberg, 2000).

In this discussion, cells are not polarised. We do not currently focus on stem
cell dynamics; this can readily be added by identifying agents as stem cells,
progenitor cells, or differentiated cells, and assigning each class different phe-
notypic characteristics. Thus, we focus on the growth and dynamics of DCIS,
rather than its initiation. We do not explicitly model cell morphology, but
rather total, nuclear, and solid volume. Where cell morphology is necessary,
we approximate it as spherical, similarly to Ramis-Conde et al. (2008a,b).
This approximation is further discussed in Section 2.1. Basement membranes
are modelled using level set functions (Section 2.2), which can be adapted to
model BM deformation (as discussed in Macklin et al. (2010b)).
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2.1 Physical characteristics and mechanics

We endow each cell with a position x, velocity v, total volume V , solid volume
VS, and nuclear volume VN . We assume that x and v are at the cell’s centre
of mass and volume. While we do not explicitly track the cell morphology, we
track the equivalent cell and nuclear radii (respectively R and RN) via

V =
4

3
πR3, VN =

4

3
πR3

N. (1)

See Fig. 2:left. For simplicity, we assume that VN is fixed throughout the cell
cycle, and the solid volume maintains a constant percentage VS/V of the total
cell volume until entering the necrotic state. (See Section 2.5.4.)

Each cell has a maximum adhesion interaction distance RA ≥ R, which we
use to express several effects. Because cells are deformable, they can stretch
beyond R to maintain or create adhesive bonds. As we do not explicitly track
the cell morphology, there is inherent uncertainty as to maximum extent of
the cell boundary relative to its centre of mass; RA needs to be sufficiently
large to account for this. This effect is increased by random actin polymeri-
sation/depolymerisation dynamics, which serve to randomly perturb the cell
boundary (Gov and Gopinathan, 2006). See Fig. 2:right.

The cells are allowed to partly overlap to account for cell deformation. (Fig. 2:
right.) We model the relative rigidity of the nucleus (relative to the cytoplasm)
by introducing increased mechanical resistance to compression at a distances
less than RN from the cell centre; see Section 2.3.5 and Appendix A. Note
that as RN ↑ R (most of the cell resists compression) or RA ↓ R (cells cannot
deform to maintain adhesive contact), the cells behave like a granular material.

2.2 Basement membrane morphology

Let us denote the intraductal space (including both the epithelium and the
lumen) by Ω and the basement membrane by ∂Ω. We represent ∂Ω implicitly
with an auxilliary signed distance function d (a level set function) satisfying





d(x) > 0 x ∈ Ω

d(x) = 0 x ∈ ∂Ω

d(x) < 0 x /∈ Ω = Ω ∪ ∂Ω.

(2)

Additionally, |∇d| ≡ 1. See Fig. 3.

This formulation can describe arbitrary BM geometries such as branch points
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Fig. 2. Cell morphology and mechanics: Left: We track the cell volume V and
nuclear volume VN (with equivalent spherical radii R and RN), and solid volume VS.
RA is the maximum adhesive interaction distance. Right: We account for uncertainty
in the cell morphology by allowing the equivalent radii to overlap (left two cells),
and by allowing adhesive contact beyond their equivalent radii (right two cells).

Fig. 3. BM morphology: Left: The BM separates the epithelium and lumen from
the stroma. Right: The signed distance function d represents the BM implicitly as
its zero isocontour. d > 0 on the epithelial side, and d < 0 on the stromal side.

in breast duct tree structures. The normal vector n to the BM surface (oriented
into the epithelium) is given by n = ∇d, and ∇ · n gives the mean geometric
curvature of the BM. This implicit representation is well-suited to describing a
moving BM as it is deformed by mechanical stresses (e.g., due to proliferating
tumour cells, as in Ribba et al. (2006)). See Macklin and Lowengrub (2005,
2006, 2007, 2008); Frieboes et al. (2007) and Macklin et al. (2009b), where we
used this method to describe moving tumour boundaries.

2.3 Forces acting upon the cells

Each cell is subject to competing forces that determine its motion. Cells ad-
here to other cells (cell-cell adhesion: Fcca), the extracellular matrix (cell-ECM
adhesion: Fcma), and the basement membrane (cell-BM adhesion: Fcba), cal-
cified debris adheres to other calcified debris (debris-debris adhesion: Fdda),
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cells and calcified debris resist compression by other cells and debris (cell-cell
repulsion: Fccr), and the basement membrane resists its penetration and de-
formation by cells and debris (cell-BM repulsion: Fcbr). Motile cells experience
a net locomotive force Floc along the direction of intended travel. In addition,
moving cells and debris experience a drag force Fdrag by the luminal and in-
terstitial fluids, which we model by Fdrag = −νvi. See Fig. 4. We currently
neglect the impact of interstitial fluid pressure; this is equivalent to assuming
the free flow of water, similarly to current continuum-scale mixture models
(e.g., as in Wise et al. (2008); Bearer et al. (2009)). We express the balance
of forces acting on cell i by Newton’s second law:

miv̇i =
N(t)∑

j=1
j 6=i

(
Fij

cca + Fij
ccr + Fij

dda

)
+ Fi

cma + Fi
cba + Fi

cbr + Fi
loc + Fi

drag. (3)

Here, N(t) is the number of cells in the simulation at time t. In this work, we
focus on the impact of adhesive and repulsive forces, and set Floc = 0

Fig. 4. Agent model forces: On Cell 5, find labelled the cell-cell adhesive (F5j
cca)

and repulsive (F5j
ccr) forces, and the cell-BM adhesive (F5

cba) and repulsive (F5
cbr)

forces. We label the net cell locomative force Fi
loc for Cell 6 (undergoing motility

along the BM) and Cell 7 (undergoing motility within the ECM). We show the
cell-ECM adhesive force (F7

cma) and fluid drag (F7
drag) for Cell 7.

2.3.1 Cell-cell adhesion (Fcca):

Adhesion molecules on a cell’s surface bond with adhesive ligands (target
molecules) on nearby cells. Hence, the strength of the adhesive force between
the cells is (to first order) proportional to the product of the receptor and
ligand expressions. The adhesion strength increases as the cells are drawn
more closely together, bringing more surface area (and receptor-ligand pairs)
into direct contact. We model the force imparted by cell j on cell i by

Fij
cca = −αccafi,j∇ϕ

(
xj − xi;R

i
cca +Rj

cca, ncca

)
, (4)
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where fi,j describes the specific molecular biology of the adhesion, Ri
cca is cell

i’s maximum adhesion interaction distance, and αcca is constant. The adhesive
potential function ϕ and the parameter ncca are detailed in Appendix A.

Homophilic adhesion: In homophilic adhesion (e.g., Panorchan et al. (2006)),
adhesion receptors E bond with identical ligands E . Hence,

fi,j = EiEj, (5)

where Ei is cell i’s (nondimensionalised) E receptor expression.

Heterophilic adhesion: In heterophilic cell-cell adhesion (e.g, Springer
(1990); Terol et al. (2003); Lucio et al. (1998)), adhesion receptors IA bond
with dissimilar ligands IB, and vice versa. Hence,

fi,j = IA,iIB,j + IB,iIA,j, (6)

where IA,i and IB,i are cell i’s (nondimensionalised) IA and IB expressions.

2.3.2 Cell-ECM adhesion (Fcma):

Integrins IE on the cell surface form heterophilic bonds with suitable lig-
ands LE in the ECM. We assume that LE is distributed proportionally to the
(nondimensional) ECM density E. If IE is distributed uniformly across the
cell surface and E varies slowly relative to the spatial size of a single cell, then
cells at rest encounter a uniform pull from Fcma in all directions, resulting in
zero net cell-ECM force. For cells in motion, Fcma resists that motion similarly
to drag due to the energy required to overcome I − L bonds:

Fcma = −αcmaIE,iEvi. (7)

Here, αcma is a constant. If E or LE varies with a higher spatial frequency, or
if IE is not uniformly distributed, then the finite half-life of IE − LE bonds
will lead to net haptotactic-type migration up gradients of E (Macklin et al.,
2010b). We model this effect as part of the net locomotive force Floc.

2.3.3 Cell-BM adhesion (Fcba):

Integrin molecules on the cell surface form heterophilic bonds with specific
ligands LB (generally laminin and fibronectin (Butler et al., 2008)) on the
basement membrane (with density 0 < B < 1). We assume that LB is dis-
tributed proportionally to the (nondimensional) BM density B. Hence, the
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strength of the cell-BM adhesive force is proportional to its integrin surface
receptor expression and B. Furthermore, the strength of the adhesion increases
as the cell approaches the BM, bringing more cell adhesion receptors in contact
with their ligands on the BM. We model this adhesive force on cell i by

Fi
cba = −αcbaIB,iB∇ϕ

(
d(xi)n (xi) ;R

i
cba, ncba

)
, (8)

where αcba is a constant, d is the distance to the basement membrane, n is
normal to the basement membrane (oriented towards the epithelial side of
the membrane; see Section 2.2), ncba is as described in Appendix A, and IB,i

and Ri
cba are cell i’s (nondimensionalised) integrin receptor expression and

maximum cell-BM adhesion interaction distance, respectively.

2.3.4 (Calcified) debris-(calcified) debris adhesion (Fdda):

We model adhesion between calcified debris particles similarly to homophilic
cell-cell adhesion: calcite crystals in the interacting calcified debris particles
remain strongly bonded as part of the microcalcification. We model this co-
hesive force between the calcified debris particles i and j by

Fij
dda = −αddaCiCj∇ϕ

(
xj − xi;R

i
dda +Rj

dda, ndda

)
, (9)

where αdda is a constant, Ci and R
i
dda are cell i’s (nondimensionalised) degree

of calcification and maximum debris-debris adhesion interaction distance, and
ndda is the exponent described in Appendix A.

2.3.5 Cell-cell repulsion (including calcified debris) (Fccr):

Cells resist compression by other cells due to the structure of their cytoskele-
tons, the incompressibility of their cytoplasm, and the surface tension of their
membranes. We introduce a cell-cell repulsive force that is zero when cells are
just touching, and increases rapidly as the cells are pressed together, particu-
larly when their nuclei are in close proximity. We approximate cell deformation
by allowing partial cell overlap. See Section 2.1. We model Fccr by

Fij
ccr = −αccr∇ψ

(
xj − xi;R

i
N +Rj

N, Ri +Rj ,M, nccr

)
, (10)

where αccr is a constant, Ri
N and Ri are cell i’s nuclear radius and radius,

respectively, and M and nccr are described in Appendix A.
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2.3.6 Cell-BM repulsion (including debris) (Fcbr):

We model the basement membrane as rigid and thus resistant to deformation
and penetration by the cells and debris. We model this force by

Fi
cbr = −αcbrB∇ψ

(
d(xi)n (xi) ;R

i
N, Ri,M, ncbr

)
, (11)

where αcbr is a constant, d is the distance to the BM, Ri
N and Ri are described

earlier, and M and ncbr are described in Appendix A. We discuss planned
work to model viscoplastic membrane expansion in Macklin et al. (2010b).

2.4 “Inertialess” assumption; Relationship to continuum-scale Darcy’s law

Similarly to Drasdo et al. (1995); Galle et al. (2005) and Ramis-Conde et al.
(2008b) and as discussed in Lowengrub et al. (2010), we make the “inertialess”
assumption that the forces equilibrate quickly, and so |miv̇i| ≈ 0. Hence, we
approximate

∑
F = 0 and solve for the cell velocity from Eq. 3:

vi =
1

ν + αcmaIE,iE




N(t)∑

j=1
j 6=i

(
Fij

cca + Fij
dda + Fij

ccr

)
+ Fi

cba + Fi
cbr + Fi

loc


 .(12)

This has a convenient interpretation: each term 1
ν+αcmaIE,iE

F� is the “terminal”

(equilibrium) velocity of the cell when fluid drag, cell-ECM adhesion, and F�

are the only forces acting upon it. Here, “�” represents any individual force
above, e.g., cba, cca, etc., and N(t) is the number of simulated cells at time t.

It is interesting to compare Eq. 12 with Darcy’s law, the basis of many
continuum-scale tumour models such as Cristini et al. (2003); Macklin and
Lowengrub (2005, 2006, 2007, 2008) and Macklin et al. (2009b). In these mod-
els, tumour growth is considered as incompressible flow in a porous medium
(the ECM). A mechanical pressure P is used to model tissue mechanics as
a balance of proliferation-induced stresses, adhesion, and tissue relaxation. If
u(x, t) is the mean tissue velocity at x, then the Darcy’s law formulation of
the tissue mechanics is given by

u = −µ∇P. (13)

See the extensive review, discussion, and references in Lowengrub et al. (2010).

The mobility coefficient µ models the ability of cells to mechanically respond
to pressure gradients by overcoming cell-cell and cell-ECM adhesive bonds,
or by deforming the ECM (Macklin and Lowengrub, 2007). In Frieboes et al.
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(2007) and Macklin et al. (2009b), we introduced a functional relationship
between the mobility µ and the ECM density E of the form

µ =
1

α + βE + 1
ε
S
, (14)

where S is a “structure variable” that models the presence (S = 1) or absence
(S = 0) of rigid barriers, ε ≈ 0, and α and β are constants. When S = 0,
Eq. 14 is identical to the coefficient in Eq. 12. While Eq. 14 was initially cho-
sen as the simplest possible with biologically-reasonable qualitative behaviour
(mobility decreases as the ECM density increases, rendering the tissue less
“permeable” to cells), we now see it is fully consistent with the cell-scale bio-
physics presented above.

2.5 Cell States

We endow each agent with a phenotypic state S(t) in the state space
{Q,P,A,H,N , C,M} (introduced below). Quiescent cells (Q) are in a “rest-
ing state” (G0, in terms of the cell cycle); this is the “default” state in the
framework. We model the transitions between cell states as stochastic events
governed by exponentially-distributed random variables that are linked to the
cell’s genetic and proteomic state, as well as the microenvironment. These
exponentially-distributed variables can be regarded as arising from nonhomo-
geneous Poisson processes; the interested reader can find a brief discussion in
the supplementary material.

For a transition to state S2 from the current state S1, and for any interval
(t, t+∆t], we use the general form

Pr (S(t +∆t) = S2|S(t) = S1) = 1− exp

(
−
∫ t+∆t

t
α12(S, •, ◦)(s) ds

)
, (15)

where α12 (S, •, ◦) (t) is the intensity function, • represents the cell’s internal
(genetic and proteomic) state, and ◦ represents the state of the surrounding
microenvironment sampled at the cell’s position x(t). Note that for small ∆t,

Pr (S(t +∆t) = S2|S(t) = S1) = α12 (S, •, ◦) (t)∆t +O
(
∆t2

)
; (16)

when α12 is constant, we recover (to second order) the commonly-used con-
stant transition probabilites for fixed step sizes ∆t; these may be regarded as
approximations to our more general model here.

If S1 → S2 transitions depend upon two separate processes with characteristic
transition intensities α′

12 and α∗
12, we may choose α12 = α′

12 + α∗
12 when these
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Fig. 5. Phenotypic transition network in the agent-based model.

processes are independent. In this case, for small ∆t,

Pr (S(t +∆t) = S2|S(t) = S1) ≈
(
α′
12 (S, •, ◦) (t) + α∗

12 (S, •, ◦) (t)
)
∆t (17)

which is approximately the probability of a S1 → S2 transition due to either
the α′

12 process or the α∗
12 process.

If the processes are not independent, we choose the form α12 = α′
12α

∗
12, yielding

Pr (S(t +∆t) = S2|S(t) = S1) ≈
(
α′
12 (S, •, ◦) (t) · α

∗
12 (S, •, ◦) (t)

)
∆t, (18)

which is approximately the probabilty of both α′
12 and α

∗
12 processes “allowing”

an S1 → S2 transition; α
′
12 and α

∗
12 are rate-limiting processes for one another.

In our cell phenotypic state space, quiescent cells can become proliferative
(P), apoptotic (A), or motile (M). (In the work below, we shall neglect the
motile state.) Cells in any state can become hypoxic (H); hypoxic cells can
recover to their previous state or become necrotic (N ), and necrotic cells are
degraded and gradually replaced by (clinically-detectable) calcified debris (C).
See Fig. 5. The subcellular scale is built into this framework by making the
random exponential variables depend upon the microenvironment and the
cell’s internal properties.

Note that cell cycle models have also been developed to regulate the P → Q
transition (e.g., Abbott et al. (2006) and Zhang et al. (2007)), and signalling
networks have been developed to regulate the Q → {P,A,M} transitions.
These can be directly integrated into the agent framework presented here by
modifying the stochastic parameters or by outright replacing the exponential
random variables with deterministic processes (Macklin et al., 2010b). Some
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excellent examples of agent-based modelling with subcellular signalling com-
ponents include Chen et al. (2009b,a); Kharait et al. (2007); Wang et al. (2007)
and Zhang et al. (2007, 2009).

2.5.1 Proliferation (P):

As suggested by experimental and theoretical work as early as Smith and
Martin (1973), quiescent cells enter the proliferative state (i.e., progress from
G0 to S) with a probability that depends upon the microenvironment. We
model the probability of a quiescent cell entering the proliferative state in the
time interval (t, t+∆t] via an exponential random variable:

Pr (S(t +∆t) = P|S(t) = Q) = 1− exp

(
−
∫ t+∆t

t
αP(S, •, ◦)(s) ds

)

≈ 1− exp(−αP(S, •, ◦)(t)∆t) , (19)

where the approximation best holds when αP varies slowly relative to ∆t.

Assuming a correlation between the microenvironmental oxygen level σ (non-
dimensionalised by the far-field oxygen level in non-diseased, normoxic tissue)
and proliferation (See Section 4, as well as the excellent discussion and refer-
ences in Silva and Gatenby (2010)), we expect αP to increase with σ. Hence:

αP = αP(S, σ, •, ◦)(t) =




αP(•, ◦)

σ−σH

1−σH

if S(t) = Q

0 else,
(20)

where σH is a threshold oxygen value at which cells become hypoxic, and
αP(•, ◦) is the cell’s Q → P transition rate when σ = 1 (i.e., in normoxic, non-
pathologic tissue), which depends upon the cell’s genetic profile and protein
signalling state (•) and the local microenvironment (◦). Note that in tumours,
low oxygenation is the norm (Gatenby et al., 2007; Smallbone et al., 2007),
and so σ is far below 1. In Part II, we generally find that σH ∼ 0.2 and σ < 0.4.

For simplicity, we model αP as constant for and specific to each cell type. In
Macklin et al. (2010b), we discuss how to incorporate • (i.e., a cell’s internal
protein expression) and ◦ (as sampled by a cell’s surface receptors) into αP

through a subcellular molecular signalling model. We note that models have
been developed that reduce the proliferation rate in response to mechanical
stresses (e.g., see the excellent description by Shraiman (2005)); in the con-
text of the model, the cell samples these stresses from continuum-scale field
variables or tensors (i.e., “◦”) to reduce αP.

Once a cell has entered the proliferative state P, it remains in that state until
dividing into two identical daughter cells of half volume, which themselves
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remain in P until “maturing” into full-sized cells at the end of G1. Thereafter,
the daughter cells are placed in the “default” quiescent state Q to simulate
the transition from G1 to G0. We now describe these events in greater detail.

Define τ to the ellapsed time since the cell entered the cell cycle from Q.
Similarly to Ramis-Conde et al. (2008b), we divide the cell cycle (with duration
τP) into the S-M phases and the G1 phase (with duration τG1). While τP and
τG1 may generally depend upon the microenvironment and the cell’s internal
state, we currently model them as fixed for any given cell type.

Fig. 6. P submodel: A cell enters P from the quiescent state Q, modelling the
G0 to S transition. It then remains in P until dividing into two identical daughter
cells of half volume. The daughter cells also remain in P until completing G1 and
“maturing” into full-sized cells; thereafter, they enter the “default” state Q.

At time τ = τP − τG1 (at the end of M), we divide the cell into two identical
daughter cells with half the mass and volume of the parent cell. We assume
that both daughter cells evenly inherit the parent cell’s surface receptor expres-
sions, internal protein expressions, and genetic characteristics (as embodied
by the phenotypic state transition parameters). We position the daughter cells
randomly, subject to two constraints:

(1) The daughter cells preserve the parent cell’s centre of volume; and
(2) The daughter cells (when considered as spheres) are fully contained within

the same volume as the former parent cell.

We accomplish this by placing the daughter cell centres symmetrically about
the parent cell’s centre, such that they fit within the parent cell’s equivalent
sphere. See Fig. 6. Thus, the cells partially overlap after mitosis; cell-cell re-
pulsive forces (see Section 2.3.5) subsequently push them apart. This overlap
partly accounts for the non-spherical cell geometry following mitosis.
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We simulate a proliferating cell’s changing volume V by

V (τ) =




V0 0 ≤ τ ≤ τP − τG1

1
2
V0
(
1 + τG1+(τ−τP)

τG1

)
τP − τG1 ≤ τ ≤ τP,

(21)

where V0 is the cell’s “mature” volume.

2.5.2 Apoptosis (A):

Apoptotic cells undergo “programmed” cell death in response to signalling
events. As with proliferation, we model entry into A using an exponentially-
distributed random variable with parameter αA(t) = αA(S, •, ◦)(t). We as-
sume no correlation between apoptosis and oxygen (Edgerton et al., 2011):

Pr (S(t +∆t) = A|S(t) = Q) = 1− exp

(
−
∫ t+∆t

t
αA(s) ds

)

≈ 1− exp(−αA(t)∆t) , (22)

where

αA(t) = αA(S, •, ◦)(t) =




αA(•, ◦) if S(t) = Q

0 else,
(23)

and where ◦ does not include oxygen σ, but may include other microenvi-
ronmental stimuli such as proximity of the BM (anoikis), chemotherapy, or
continuum-scale mechanical stresses that increase αA as in Shraiman (2005).
Cells remain in the apoptotic state for a fixed amount of time τA; afterward
they are removed from the simulation to model phagocytosis of apoptotic
bodies. Their previously-occupied volume is made available to the surround-
ing cells to model the release of the cells’ water content after lysis.

2.5.3 Hypoxia (H):

Cells enter the hypoxic state at any time that σ < σH. Hypoxic cells have an
exposure time-dependent probability of becoming necrotic:

Pr (S(t +∆t) = N|S(t) = H) = 1− exp

(
−
∫ t+∆t

t
βH(σ)(s) ds

)
ds

≈ 1− exp(−βH (σ) (t)∆t) . (24)

We currently model βH(σ)(t) as constant, although it could readily be made
dependent upon σ to more explicitly model energy depletion, such as in Small-
bone et al. (2007) and Silva and Gatenby (2010). If σ > σH (normoxia is
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restored) at time t + ∆t and the cell has not become necrotic, it returns to
its former state and resumes its activity. For example, if the cell transitioned
from P to H after spending τ time in the cell cycle, and normoxic conditions
are restored, then it returns to P with τ time having ellapsed in its cell cycle
progression. Notice that by Eq. 24, the probability that a cell succumbs to
hypoxia increases with ∆t whenever S = H, independently of previous states.
Hence, this probability scales (nonlinearly) with its cumulative exposure time
to hypoxia. This construct could model cell response to other stressors (e.g.,
chemotherapy), similarly to “area under the curve” models (e.g., El-Kareh
and Secomb (2003, 2005)).

2.5.4 Necrosis (N ):

In our model, a hypoxic cell has a probability of irreversibly entering the
necrotic state, simulating depletion of its ATP store. We can also simplify the
model and neglect the hypoxic state by letting βH → ∞.

We assume that a cell remains in N for a fixed amount of time τN, during
which time its surface receptors and subcellular structures degrade, it loses
its liquid volume, and calcium is deposited (primarily) in its solid fraction.
We define τNL to be the length of time for the cell to swell, lyse, and lose its
water content, τNS the time for all surface receptors to degrade and become
functionally inactive, and τC, the time for calcification to occur. We assume
that τNL ≤ τNS < τC = τN. In Macklin et al. (2009a) we found that a simplified
model (where τN = τNS = τNL = τC) could not reproduce certain morphological
aspects of the viable rim-necrotic core interface in breast cancer.

If τ is the elapsed time spent in the necrotic state, we model the degradation
of the surface receptor species S (scaled by the non-necrotic expression level)
by exponential decay with rate constant log 100/τNS; the constant is chosen so
that S(τNS) = 0.01 S(0), i.e., virtually all of the surface receptor is degraded
by time τ = τNS. After time τNS, we set S = 0.

To model the necrotic cell’s volume change, let fNS be the maximum percent-
age increase in the cell’s volume (just prior to lysis), and let V0 be the cell’s
volume at the onset of necrosis. Then

V (τ) =




V0
(
1 + fNS

τ
τNL

)
if 0 ≤ τ < τNL

VS if τNL < τ,
(25)

where VS is the cell’s solid volume. If the cell’s nuclear radius RN exceeds its
equivalent radius R after lysis, then we set RN = R. To model uncertainty in
the cell morphology during lysis, we randomly perturb its location x such that

its new radius R(τNL) is contained within its swelled radius R(0) (1 + fNS)
1

3 .
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Lastly, we assume a constant rate of cell calcification, with the necrotic cell
reaching a clinically-detectable level of calcification at time τC. If C is the
nondimensional degree of calcification, then C(t) = τ/τC.

2.5.5 Calcified debris (C):

Necrotic cells are gradually calcified until reaching a clinically-detectable level
of calcification; such cells make an irreversible N → C transition. Lacking
functional adhesion receptors, these cells only adhere to other calcified debris;
this is a simplified model of the crystalline bonds in the calcification.

2.6 Dynamic coupling with the microenvironment with upscaling

We integrate the agent model with the microenvironment as part of a discrete-
continuum composite model, demonstrating here with a coupling to oxy-
gen transport; further examples including ECM-MMP dynamics are given in
Macklin et al. (2010b). We do this by introducing field variables for key mi-
croenvironmental components (e.g., oxygen, signalling molecules, extracellular
matrix, etc.) that are updated according to continuum equations. The distri-
butions of these variables affect the cell agents’ evolution as already described;
simultaneously, the agents impact the evolution of the continuum variables.
In the language of Deisboeck et al. (2010), this is a composite hybrid model.

2.6.1 Oxygen transport

All cell agents uptake oxygen as a part of metabolism. At the macroscopic
scale, this is modelled by

∂σ

∂t
= ∇ · (D∇σ)− λσ, (26)

where σ is oxygen, D is its diffusion constant, and λ is the (spatiotemporally
variable) uptake/decay rate. Suppose that viable (non-necrotic, non-calcified)
tumour cells uptake oxygen at a rate λt, host cells at a rate λh, and elsewhere
oxygen “decays” (by reacting with the molecular landscape) at a low back-
ground rate λb. Suppose that in a small neighbourhood B of x, tumour cells,
host cells, and stroma (non-cells) respectively occupy fractions ft, fh, and fb
of B, where ft + fh + fb = 1. Then λ(x) is given by

λ(x) ≈ ftλt + fhλh + fbλb, (27)

i.e., by averaging the uptake rates with weighting according to the tissue
composition near x. This is consistent with the uptake rate model by Hoehme
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and Drasdo (2010), which they based upon the experimental literature.

We could further decompose ft and fh according to cell phenotype, if the up-
take rates were expected to vary. In numerical implementations, we generally
compute λ at a scale that resolves the cells (e.g., mesh size ∼ 1 µm) and then
upscale it to the computational mesh. See Part II (Macklin et al., 2011). In
this formulation, the cell uptake rate varies with the tumour microstructure,
which, in turn, evolves according to nutrient and oxygen availability.

Boundary conditions vary by the biology of the modelled problem. In our work,
we set σ = σB (for a fixed boundary value σB on the basement membrane
and inside the stroma (wherever d ≤ 0) to model the release of oxygen by
a pre-existent vasculature in the stroma. Wherever the simulation boundary
intersects lumen, we use Neumann boundary conditions.

3 Analysis of the volume-averaged model behaviour

Let us fix a volume Ω contained within a non-hypoxic, non-necrotic tissue (i.e.,
all cells i in Ω satisfy Si /∈ {H,N , C}). We analyse the population dynamics in
the simplified Q-A-P cell state network; this analysis is the basis of the model
calibration in Part II (Macklin et al., 2011). Let P (t), A(t), and Q(t) denote
the number of proliferating, apoptosing, and quiescent cells in Ω at time t,
respectively. Let N(t) = P + A + Q. If 〈αP〉(t) = 1

|Ω|

∫
Ω αP dV is the mean

value of αP at time t throughout Ω, then the net number of cells entering
state P in the time interval [t, t +∆t) is approximately

P (t+∆t) =P (t) + Pr (S(t +∆t) = P|S(t) = Q)Q(t)−
1

τP
P (t)∆t

≈P (t) +
(
1− e−〈αP〉∆t

)
Q(t)−

1

τP
P (t)∆t, (28)

whose limit as ∆t ↓ 0 (after some rearrangement) is

Ṗ = 〈αP〉Q−
1

τP
P. (29)

Similarly,

Ȧ=αAQ−
1

τA
A (30)

Q̇=2
1

τP
P − (〈αP〉+ αA)Q. (31)
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Summing these, we obtain

Ṅ =
1

τP
P −

1

τA
A. (32)

Next, define PI = P/N and AI = A/N to be the proliferative and apoptotic
indices, respectively. We can express the equations above in terms of AI and PI
by dividing by N and using Eq. 32 to properly treat d

dt
(P/N) and d

dt
(A/N).

After simplifying, we obtain a nonlinear system of ODEs for PI and AI:

ṖI = 〈αP〉 (1−AI− PI)−
1

τP

(
PI + PI2

)
+

1

τA
AI · PI (33)

ȦI=αA (1− AI− PI)−
1

τA

(
AI− AI2

)
−

1

τP
AI · PI. (34)

These equations are far simpler to compare to immunohistochemical measure-
ments, which are generally given in terms of AI and PI.

Lastly, let us nondimensionalise the equations by letting t = t̂ t, where t̂ is
dimensionless. Then if f ′ = d

dt̂
f , we have

1

t
PI′ = 〈αP〉 (1−AI− PI)−

1

τP

(
PI + PI2

)
+

1

τA
AI · PI (35)

1

t
AI′ =αA (1− AI− PI)−

1

τA

(
AI− AI2

)
−

1

τP
AI · PI. (36)

The cell cycle length τP is on the order of 1 day (e.g., as in Owen et al.
(2004)), and in Part II (Macklin et al., 2011), we determine that τA is of similar
magnitude. Thus, if we choose t ∼ O (10 day) or greater, then we can assume
that 1

t
PI′ = 0 = 1

t
AI′ and conclude that the local cell state dynamics reach

steady state after after 10-100 days. This is significant, because it allows us
to calibrate the population dynamic parameters (αA, αP, τA, and τP) without
the inherent difficulty of estimating time derivatives from often noisy in vitro
and immunohistochemistry data. This result is consistent with our earlier
mathematical analysis in Macklin and Lowengrub (2007), which hypothesised
“local equilibriation” of the tumour microstructure, even during growth.

4 Volume-averaged model behaviour, and testable hypotheses

We conclude Part I by applying a volume-averaged analysis to the viable rim
in DCIS to generate biological hypotheses that we test against immunohis-
tochemistry data. For fixed AI, PI, τA, and τP, we can use Eqs. 33-34 to
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determine 〈αP〉 and αA, and ultimately, αP ; see Part II for full details (Mack-
lin et al., 2011). In Macklin et al. (2009a), we instead treated αA and αP and
constant and solved the nonlinear ODE system for PI and AI to steady state
as a function of 0 ≤ σ ≤ 1. This analysis led us to predict Michaelis-Menten
population kinetics as an emergent model phenomenon: for sufficient oxygen
availability, proliferation saturates, indicating that oxygenation is no longer
the primary growth-limiting factor.

Fig. 7. Ki-67 immunohistochemistry for ducts F3 (left) and F19 (right) for
anonymised case 100019. Ki-67 positive nuclei stain dark red; Ki-67 negative nuclei
are counterstained light blue. A colour verison of this image is available online.

We now test this hypothesis based upon a careful analysis of Ki-67 immuno-
histochemistry in two exemplar ducts (F3 and F19) for a DCIS patient (anon-
ymised case 100019) (Edgerton et al., 2011). See Fig. 7. For each of these
ducts, we calculate the distance of all nuclei and Ki-67 positive nuclei to the
duct wall, the mean distance from the duct centroid to the duct wall (i.e.,
the radius Rduct), and the mean duct viable rim thickness T . Next, we create
a histogram of Ki-67-positive nucleus distances to the duct wall (Fig. 8, first
row), all nucleus distances to the duct wall using the same histogram “bins”
(Fig. 8, second row), and divide these to obtain the proliferative index (PI)
versus distance from the duct wall (Fig. 8, third row).

Next, we estimate the 3-D steady-state oxygen profile through the ducts (as-
sumed radially symmetric with no variation in the longitudinal direction):

0 = L2
(
σ′′ +

1

r
σ′
)
− σ, 0 < r < Rduct (37)

with boundary conditions

σ(Rduct − T ) = σH, σ′(0) = 0, (38)
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Fig. 8. Histograms of Ki-67 positive nuclei vs. distance from duct wall (top row), all
nuclei vs. distance from duct wall (middle row), and proliferative index vs. distance
from the duct wall (bottom row). Left column: Duct F3. Right column: Duct F19.

The solution is

σ(r) =
σH

I0
(
Rduct−T

L

)I0
(
r

L

)
, (39)

where In is the nth-order modifed Bessel function of the first kind, σ is nondi-
mensionalised by the normoxic oxygen level in non-pathological tissue,
L = 100 µm, and σH = 0.2. (See Part II.) The mean value of the oxygen
solution in the viable rim (Rduct − T < r < Rduct) is given explicitly by

〈σ〉 =
(

2LσH
2RductT − T 2

)

RductI1

(
Rduct

L

)
− (Rduct − T ) I1

(
Rduct−T

L

)

I0
(
Rduct−T

L

)


 . (40)
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For the duct in F3,

Rduct ≈ 188.4634 µm, T ≈ 119.0256 µm, and 〈σ〉 ≈ 0.282145,

and for the duct in F19,

Rduct ≈ 217.5548 µm, T ≈ 97.9602 µm, and 〈σ〉 ≈ 0.280459.
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Fig. 9. Comparison of the predicted PI curve (solid curve) with data from duct F3
(dashed curve) and duct F19 (dotted curve) for case 100019.

By correlating the oxygen solutions with the PI profiles, we estimate the rela-
tionship between the measured PI and σ in the ducts. We plot these curves for
F3 (dashed curve) and F19 (dotted curve) against the predicted curve (solid
curve) from Macklin et al. (2009a) in Fig. 9. The theoretical predictions and
measurements agree qualitatively but not quantitatively. We conclude that
while proliferation correlates with oxygen levels throughout the tumour, oxy-
genation alone cannot fully determine PI. Hence, there must be additional
heterogeneities in other microenvironmental factors (e.g., EGF), gene expres-
sion, or protein signalling across the tumour.

The next natural question is whether we can account for these heterogeneities
with our current functional form by applying the same analysis to the indi-
vidual ducts. We use AI = 0.008838 in each duct, and PI, Rduct, and T as
measured separately for each duct above. For the duct in F3,

PI = 0.281030, αA ≈ 0.00162405 h−1,

〈αP〉 ≈ 0.0277579 h−1, and αP (S, •) ≈ 0.270331 h−1;

and for the duct in F19,
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Fig. 10. Comparison of the hypothesised (solid) and measured (dashed and dotted)
PI vs. σ curves for duct F3 (dashed) duct F19 (dotted).

PI = 0.148045, αA ≈ 0.00129067 h−1,

〈αP〉 ≈ 0.0110190 h−1, and αP(S, •) ≈ 0.109562 h−1.

Using this, we generate PI-vs-σ curves for the individual ducts based upon Eq.
33 and compare them to the measured data in Fig. 10. There is generally much
improved quantitative agreement between the predicted (solid) and measured
(dashed and dotted) curves. The difference in the predicted curves for the two
ducts is due to the substantial difference in αP : αP is much greater for F3,
which has the overall higher PI curve.

We next examine the data in the ducts (Fig. 7) within the context of our
modelling framework and the predicted PI-vs-σ curves to generate additional
biological hypotheses. Notice that the cell density is lower in F3 (Fig. 7 left:
larger nuclei with greater spacing between cells) than in F19 (Fig. 7 right:
smaller nuclei with less spacing between cells). These lead us to hypothesise
that αP decreases with increasing cell density. E-cadherin/β-catenin signalling
may be the physiological explanation of the phenomenon: when E-cadherin
is bound to E-cadherin on a neighboring cell, β-catenin binds to the phos-
phorylated receptors, blocking its downstream pro-proliferative activity. (See
Section 1.1.) For higher cell densities, more cell surfaces are in contact with
each other, providing greater opportunities for E-cadherin binding; we conse-
quently hypothesise that cell density correlates with cell cycle blockade by the
E-cadherin/β-catenin pathway, resulting in the apparent relationship between
cell density and αP . Further evidence can be seen in duct F19 (Fig. 7, right):
the majority of the proliferation activity is in a single layer of cells along the
duct wall. Because these cells are adhered to the basement membrane, they
present less surface for E-cadherin binding activity (relative to the interior
cells), resulting in reduced E-cadherin blockade of proliferation.

These hypotheses can be tested by correlating αP with cell density in a larger
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number of ducts, performing IHC for β-catenin activity, and correlating β-
catenin-mediated transcription (indicated by presence of β-catenin in the nu-
clei) with cell density and distance from the duct wall. One could use these
data to hypothesise, calibrate, and test new functional forms for αP, such as:

αP(S, σ, •, ◦) = αP (•, ◦)

(
1− E〈E〉

ρ

ρmax

)(
σ − σH
1− σH

)
, (41)

where ρ is the local cell density, PI ≈ 0 when ρ = ρmax, E is the cell’s (nondi-
mensional) E-cadherin expression, and 〈E〉 is the tumour’s mean E-cadherin
expression. In such a formulation, αP (•, ◦) determines the cell’s Q → P tran-
sition rate in normoxic conditions with minimal E-cadherin signalling.

5 Discussion and Looking Forward

In this work, we developed and analysed an agent-based model of ductal car-
cinoma in situ (DCIS) of the breast. Our work refines and makes more explicit
the biological underpinnings of current agent-based cell models, particularly
regarding finite cell-cell interaction distances, the need for partial cell over-
lap to account for uncertainty in cell positions and morphology, and a more
rigorous way to vary phenotypic transition probabilities with the time step
size, the cell’s internal state, and the microenvironment. We provide the most
detailed model to date of cell necrosis, and are the first to model cell cal-
cification. Our analysis of the model steady-state, volume-veraged dynamics
lead to quantitative predictions on the relationship between cell proliferation,
oxygen availability, and cell signalling heterogeneity; these predictions were
tested against actual patient data, yielding further insight on DCIS biology.

In Part II (Macklin et al., 2011), we use this analysis to develop a patient-
specific calibration protocol, which is broadly applicable to well-formulated
agent-based models. We test this protocol using data from an actual DCIS
patient to simulate DCIS in 1.5 mm length of breast duct for 45 days. The
simulation results will lead to quantitative predictions on the rate of DCIS
growth (approximately 1 cm/year), which we shall validate against indepen-
dent clinical data. The model will predict a (linear) relationship between the
size of a calcification (as measured pre-operatively in a mammogram) and the
actual tumour size (as measured post-operatively by a pathologist)–this, too,
is successfully validated against a large set of clinical data. Lastly, the model
will yield new insight on the biological and biomechanical underpinnings of the
growing body of statistical knowledge that has been accumulated on DCIS,
raising the possibilty of improved clinical planning and treatment of DCIS.
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A A simple family of potential functions

As in Drasdo et al. (1995); Drasdo and Höhme (2003, 2005); Drasdo (2005);
Ramis-Conde et al. (2008a,b), and Byrne and Drasdo (2009), we use potential
functions to model biomechanical interactions between cells and the microen-
vironment. We now define two potential functions ϕ (for adhesion) and ψ (for
mechanical resistance/repulsion) used in the agent model. These potentials
are updated from those presented in Macklin et al. (2009a, 2010a,b). A good
discussion of the use of potential functions to mediate cell-cell interactions
for individual-based models can be found in Byrne and Drasdo (2009). Recent
work by Ramis-Conde et al. (2008a,b) ties potential functions to more detailed
models of intracellular mechanics and E-cadherin dynamics.

For the adhesion potential ϕ, let RA be the cell’s maximum adhesive interac-
tion distance. For any n ∈ N, define ϕ first by its gradient:

∇ϕ(r;RA, n) =





(
1− |r|

RA

)n+1
r

|r|
, 0 ≤ |r| ≤ RA

0 else,
(A.1)
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and so

ϕ(r;RA, n) =




− RA

n+2

(
1− |r|

RA

)n+2
0 ≤ |r| ≤ RA

0 else.
(A.2)

Note that ϕ and its derivatives have compact support, to model the finite
interaction distance between cells; this is computationally beneficial as well
(Macklin et al., 2009a, 2010b). The baseline case n = 0 is a linear ramping to
the maximum force when |r| = 0. For n > 0, ϕ tapers off smoothly.

We apply ϕ to the adhesive force imparted on cell i by cell j via

Fij
cca = −αcca∇ϕ

(
xj − xi;R

i
A +Rj

A, n
i
cca

)
. (A.3)

Note that this takes into account the deformability of both cells by using
Ri

A+R
j
A. When we apply ϕ to cell-BM adhesion (as applied to cell i), we have

Fi
cba = −αcba∇ϕ

(
d (xi)n (xi) ;R

i
A, n

i
cba

)
, (A.4)

where d (xi) is the distance of cell i to the basement membrane, and the n (xi)
is normal to the membrane (facing the epithelial side of the BM). Notice
that setting the maximum interaction distance to Ri

A is consistent with our
modelling simplification that the basement membrane is non-deformable.

Similarly, we define the repulsion potential ψ through its gradient. If m is a
fixed nonnegative integer, RN is the nuclear radius, R is the cell’s radius, and
M ≥ 1 is the cell’s maximum repulsive force, define

∇ψ(r;RN, R,M,m) =





−
(
c |r|
RN

+M
)

r

|r|
0 ≤ |r| ≤ RN

−
(
1− |r|

R

)m+1
r

|r|
RN ≤ |r| ≤ R

0 else,

(A.5)

where

c =

((
1−

RN

R

)m+1

−M

)
. (A.6)

We can obtain ψ by directly integrating ∇ψ with respect to |x| as we did for
ϕ (although it is not necessary for our model).

As with ϕ, ψ and its derivatives have compact support; this models the fact
that cells only repel one another when they are in physical contact. We make
ψ linear in the nuclear region (with M ≥ 1) to model a stiffer material and
allow the nuclear and cytoskeletal mechanics to be specified independently.

When we apply ψ to the repulsive force imparted by cell j on cell i, we have

Fij
ccr = −αccr∇ψ

(
xj − xi;R

i
N +Rj

N, R
i +Rj ,Mi, n

i
ccr

)
. (A.7)
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Fig. A.1. Potential functions and derivatives for m = n = 1, and M = 1,
αccr = 1, and αcca = 0.5184. Left : αccrψ + αccaϕ. Right : −

∂
∂r

(αccrψ + αccaϕ).

When we apply ψ to cell-BM repulsion (as applied to cell i), we have

Fi
cbr = −αcbr∇ψ

(
d (xi)n (xi) ;R

i
N, R

i,M i, ni
cbr

)
. (A.8)

In Fig. A.1, we plot αccrψ + αccaϕ and − ∂
∂r

(αccrψ + αccaϕ) for αccr = 1,
αcca = 0.5184, R = 10, RA = 12, RN = 5, s = 7, M = 1, and n = m = 1.
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