
Lecture 2: Lecture 2: 
An agent-based cell 

model;
application to DCIS

Paul Macklin, Ph.D.

17 August 2010

Lecturer

University of Dundee



Motivation

• Want to study ductal carcinoma in situ (DCIS)
– Impact of adhesive forces and other mechanics

– Impact of heterogeneity– Impact of heterogeneity

– Impact of many processes with varied time scales

– Impact of many interacting cells, but with some subcellular processes

• Want a predictive model – emergent phenomena
– If too much assumed a priori, then “predictions” just verify your programming

• Want a modular model

• Want to calibrate to patient data (IHC, H&E)

• Model it as a physics problem!• Model it as a physics problem!
– Cells are physical objects subject to forces

– Biology comes in as constitutive relations that tell us:
• what forces are active

• what the cells are doing as they’re moved around by forces

– Approach: agent-based model (a.k.a., particle method, individual-based model)
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Overall Framework

• Each cell is a physical object

– Lattice-free position, velocity

• Finite size• Finite size

– Nuclear volume, overall volume, solid fraction

• No explicit morphology model

– Cell-cell interactions designed to partly account for it

• Motion determined by forces

– Cell-cell adhesion & repulsion

– Cell-BM adhesion & repulsion

– Cell-ECM adhesion

– Fluid drag

– Net locomotive force– Net locomotive force

• Each cell endowed with phenotypic state

– Quiescent (G0), Proliferative (S-G2-M-G1), Motile, Apoptotic, Hypoxic, Necrotic, Calcified Debris

– Governed by exponentially-distributed random variables – can be matched to IHC

– Linked to cell’s external state, local microenvironment

• Use same model for all cell types – only the parameters vary

– Similar to Hanahan and Weinberg “Hallmarks of Cancer”
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Cell biomechanics, cell and tissue 
geometry

•Each cell has overall and nuclear 
volumes V, VNvolumes V, VN

– Regulated by phenotypic “sub-
models”

– Related to equivalent radii (R, RN) by 
spherical approximation

•Each cell has maximum interaction 
distance RA

– Approximates cell deformability– Approximates cell deformability
– Accounts for uncertainty in cell 

position and morphology

•Cell “radii” can overlap
– Further accounts for deformability 

and uncertainty



Cell biomechanics, cell and tissue 
geometry

• Model basement membrane location with signed distance function d (level set function):

• Encodes geometric information (normal vector, curvature) as derivatives:

– n = ∇d / | ∇d | κ = ∇ ∙ n

• Can model very complex shapes

• Method originated in fluid mechanics (Sethian, Osher, Adalsteinsson)

• has also been used to model moving tumour boundary (Macklin et al.)

• Can use level set methods to model BM motion under stresses, similar to work by Ribba et al. 
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Forces acting on the cell

• Cell’s motion is given by the sum of the forces acting 
upon itupon it

– Homophilic and heterophilic cell-cell adhesion (Fcca)
– Cell-cell repulsion (Fccr)
– Cell-BM adhesion and repulsion (Fcba and Fcbr)
– Cell-ECM adhesion (Fcma)
– Fluid drag (Fdrag)
– Net locomotive force (Floc)– Net locomotive force (Floc)

• Sum these to get motion by Newton’s 2nd law:



Forces acting on the cell

• Model adhesive and repulsive forces using potential functions

– See earlier models by Drasdo, Höhme, Galle, Ramis-Conde, …

• Cells move down the potential gradient (minimise energy)• Cells move down the potential gradient (minimise energy)

• Separate potentials for each force

• Compact support

– finite interaction distances

– Helpful for computations

• Repulsive properties separately defined in cytoplasm and 
nucleus

• Can be applied to cells with varying size and mechanical 
properties

Adhesive 
Potential

Repulsive 
Potential



Forces acting on the cell

• Homophilic cell-cell adhesion
– Proportional to E-cadherin on cell and neighbours– Proportional to E-cadherin on cell and neighbours

• Heterophilic cell-cell adhesion
– Proportional to adhesion molecules and ligands on both cell and 

neighbours 

• Cell-cell repulsion 



Forces acting on the cell

• Cell-BM adhesion

• Cell-BM repulsion

• Cell-ECM adhesion and fluid drag

• Net locomotive force

– Depends upon model complexity

– Can range to full actin polymerisation dynamics (e.g., Lauffenburger motility models) to 
chemotaxis as constitutive relation (e.g., McDougall, Chaplain, Anderson angiogenesis work) 



Forces acting on the cell

• Inertialess assumption

– Forces equilibrate quickly

can solve for “terminal” velocity– can solve for “terminal” velocity

• Related to Darcy’s law for continuum models (Cristini et. al 2003 …):

– u = - μ∇P

– P is mechanical pressure generated by proliferating cells

– Gradient pushes cells through porous medium (ECM)

– μ is the mobility: ability of tissue to respond to ∇P

• Cells overcome cell-cell, cell-ECM adhesion and move

• Tissue deformsi

• V is the net balance of repulsion + proliferation vs. adhesion 

• Matches func. form of μ from Frieboes et al. (2007), Macklin et al. (2009):

– S is a structure variable (1 in rigid barriers, 0 elsewhere)
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Phenotypic states as stochastic 
processes

• Each cell has phenotypic state S(t)

• Each state has finite (and nonzero) duration, 
with activity governed by a sub-modelwith activity governed by a sub-model

• Transition probabilities among states governed 
by exponential random variables

– Tied to internal state and microenvironment 
through the rate parameter

– Originate from nonhomogeneous Poisson 
processes

– Generalise constant-probability-per-constant-time 
models in widespread use todaymodels in widespread use today

– Can be rigorously varied with variable time step 
size (e.g., for numerical stability conditions)



Phenotypic states as stochastic 
processes: Proliferation

• Probability of Q � P transition in (t,t+Δt]:

– Rate αP depends upon internal state ● and 
microenvironment ○microenvironment ○

• Model extra biology with αP as constitutive relations

– Dependence upon oxygen due to observed radial 
variation in Ki-67 IHC

• Model volume change after mitosis and during 
subsequent G1 growth

• Fixed cycle length τP, G1 length τG1, but could be made 
to vary with additional submodels



Phenotypic states as stochastic 
processes: Apoptosis

•Probability of Q �A transition in (t,t+Δt]:

– Rate α depends upon internal state ● and – Rate αA depends upon internal state ● and 
microenvironment ○

– Cell removed from simulation after fixed time τA

• Models phagocytosis by neighbours

• Cell’s volume now available to other cells

• Similar to pressure / stress relief in continuum models



Phenotypic states as stochastic 
processes: Hypoxia, Necrosis, Calcification

• Deterministic shift to hypoxic state H if σ < σH:

• Probability of H �N increases with time spent in H:

• If normoxia restored, resumes previous state

• Currently no HIF signalling – see Gatenby, Smallbone, Silva … 

• Necrotic cells lose their adhesion receptors (exponential decay)

• Necrotic cells swell and lyse:

• Remaining solid component calcifies:

• Model debis-debris adhesion as homophilic (in the microcalcification)



Phenotypic states as stochastic 
processes: Mathematical Context

• Probability of changing from state Q to state X with rate parameter α is approximately linear 
(when α is constant) for very short times:

• This linearisation is common, particularly in cellular automata:

– constant probability for a fixed time step size

• So, the exponential transition probability is a natural generalisation

• Stochastic process: A series of random variables indexed by time t:  Nt

• Counting process:

• Poisson process:

• α is the intensity function



Phenotypic states as stochastic 
processes: Mathematical Context

• Probability of (≥) one event in (t,t+Δt] is exponential:

– Xt is poisson process, number of events of some type at time t

– An is time of nth event (arrival time)– An is time of n event (arrival time)

– Tn is the time between the An and An-1 events (interarrival time)

• If the α = α(t), lose stationary intervals, get nonhomogeneous Poisson process

• So, our model (and by generalisation, all models with probabilistic phenotypic transitions) stems 
from nohomogeneous Poisson processes

• Useful tool for further understanding.  Apply stochastic processes theory, queueing theory, 
Markov chains, etc. 

• Example:• Example:

– Pt is number of Q � P transitions by time t. (for a cell, its ancestors, and progeny)

– At is the number of Q � A transitions by time t (for a cell, its ancestors, and progeny)

– Nt = At + Pt  A Poisson process with intensity function αA + αP

– Time to next event is exponential with rate αA + αP

– Time to next event is minimum to next proliferation, apoptosis times

– Probability next event is proliferation:    αP / ( αA + αP )

• Cell decisions as a “race” between competing processes
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Linking with the microenvironment

• Oxygen transport
– Uptake rate varies on the cell scale

• MMP secretion, ECM-MMP 
dynamics

– Secretion rate varies on cell scale

• Solve these on the tissue scale, get 
the rate constants by upscaling

• These feed back to affect cell 
phenotype and mechanics



Lecture Outline

• Overall framework

• Cell biomechanics, cell and BM geometry• Cell biomechanics, cell and BM geometry

• Forces acting on the cell

• Phenotypic states as stochastic processes

• Linking with the microenvironment

• Linking with the molecular scale• Linking with the molecular scale

• Volume-averaged analysis

• Application: DCIS Ki-67 immunohistochemistry

• Coming next

• References



Linking with the molecular scale

• Each cell gets a set of genes G, proteins P, samples microenvironmental stimuli S, and a signalling 
network:

• Make the phenotypic transition rates depend upon this network.

• Example: E-cadherin/β-catenin signalling:

– P1: unligated E-cadherin

– P2: ligated E-cadherin

– P3: free β-catenin

– P4: sequestered β-catenin

– Free β-catenin can reach nucleus, transcribe other proteins, promote cycle progression

• fP is increasing, with fP(0) ≥ 0, fP(1) ≤ 1. 

• See great work by Diesboeck et al. (for EGFR)

• Ramis-Conde, Chaplain and others (E-cadherin/β-catenin)
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Volume-averaged analysis

• Fix any volume Ω in a normoxic region. 

• Consider the state space {Q, A, P}

• Let Q(t), A(t), P(t) be total number of cells in Ω in each state at time t• Let Q(t), A(t), P(t) be total number of cells in Ω in each state at time t

• Let N = Q + A + P be the total number of cells in Ω

• Use the Q �P probability and cell cycle length to get an equation for P:

• Take the limit as Δt � 0:• Take the limit as Δt � 0:

• Similarly:



Volume-averaged analysis

• Want to match to immunohistochemistry:
– Proliferative index: PI = P/N (by Ki-67 staining)

– Apoptotic index: AI = A/N (by cleaved Caspase-3 staining)– Apoptotic index: AI = A/N (by cleaved Caspase-3 staining)

• Divide equations by N, be careful with quotient rule:
– PI’ = P’ / N – PI N’ / N  = P’ / N – PI ( PI/τP - AI/τA )

– AI’ = A’ / N – AI N’ / N  = A’ / N – AI ( PI/τP - AI/τA )

• and get a nonlinear system for AI and PI:

• Very simple argument on magnitude of τA and τP says this reaches steady 
state on the order of 10 to 100 days

• If AI and PI are known, and if the cell cycle and apoptosis times are known, 
can solve for the transition rates! (Hint hint. Next lecture)
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Application: DCIS Ki-67 
Immunohistochemistry

• If you solve the ODE system to steady state for fixed parameters, can get AI and PI as a function 
of any input parameter for αP 

• We applied this to understand PI vs O2 in DCIS• We applied this to understand PI vs O2 in DCIS

• Ki-67 IHC:

– Ki-67 is a nuclear protein present through most of the cell cycle

– Immunohistochemistry: 

• Immuno = uses antibody to protein X to attach stain to target protein 

• Histochemistry = chemistry of tissues

– Very standard immunostain in pathology and experimental biology

– In these images, Ki-67 positive nuclei are dark � indicates non-G0 viable cell



Application: DCIS Ki-67 
Immunohistochemistry

• Step 1: Get a histogram of total nucleus count vs. distance for breast duct wall 
in viable rim

• Step 2: Get a histogram of total Ki-67 positive nucleus count vs. distance for 
same binssame bins



Application: DCIS Ki-67 
Immunohistochemistry

• Step 3: Divide these to get PI vs. distance from duct 
wallwall

• Step 4: Estimate oxygen profile in duct



Application: DCIS Ki-67 
Immunohistochemistry

• Step 5: Solve the nonlinear system to steady state for various values of σ to get predicted PI-vs-σ curve

• Step 6: Compare results

– Qualitative match � general constitutive relation and model are goodQualitative match general constitutive relation and model are good

– No quantitative match � some biology unaccounted for

• Step 7: New hypotheses, try again

– Redo the PI-vs-σ on a duct-by-duct basis (use individual duct data)

• Left duct:                                                                                              Right duct:

– Should be able to match curves quantitatively



Application: DCIS Ki-67 
Immunohistochemistry

• Step 8: Compare again
– Much better quantitative match

• Step 9: More analysis, new hypotheses
– Both ducts had similar estimated oxygenation

– Must be signalling heterogeneity

– Notice densities are different � E-cadherin/β-catenin?
• Higher proliferation where less of cell’s surface area is in cell contact. 

– New functional form?
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Coming Next:

••Lecture 1:Lecture 1:

–– Cancer biology for modellersCancer biology for modellers–– Cancer biology for modellersCancer biology for modellers

••Lecture 2:Lecture 2:

–– An agentAn agent--based cell model; application to DCISbased cell model; application to DCIS

••Lecture 3:Lecture 3:

–– Parameter estimation, patientParameter estimation, patient--specific calibrationspecific calibration–– Parameter estimation, patientParameter estimation, patient--specific calibrationspecific calibration

••Lecture 4:Lecture 4:

–– Numerical method, simulation resultsNumerical method, simulation results
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